hidden markov models biostatistics 615 815 lecture 12
play

Hidden Markov Models Biostatistics 615/815 Lecture 12: . . . . - PowerPoint PPT Presentation

. . February 15th, 2011 Biostatistics 615/815 - Lecture 12 Hyun Min Kang February 15th, 2011 Hyun Min Kang Hidden Markov Models Biostatistics 615/815 Lecture 12: . . . . . . Summary . . Example Viterbi HMM Graphical Models . .


  1. . . February 15th, 2011 Biostatistics 615/815 - Lecture 12 Hyun Min Kang February 15th, 2011 Hyun Min Kang Hidden Markov Models Biostatistics 615/815 Lecture 12: . . . . . . Summary . . Example Viterbi HMM Graphical Models . . . . . . . . . . . . . 1 / 27 . . . . . . . . . . . . . . . .

  2. . Example February 15th, 2011 Biostatistics 615/815 - Lecture 12 Hyun Min Kang independence between random variables. independent Graphical Models 101 . . Summary Viterbi . . . . . . . . . . . . . 2 / 27 Graphical Models HMM . . . . . . . . . . . . . . . . • Marriage between probability theory and graph theory • Each random variable is represented as vertex • Dependency between random variables is modeled as edge • Directed edge : conditional distribution • Undirected edge : joint distribution • Unconnected pair of vertices (without path from one to another) is • A powerful tool to represent complex structure of dependence /

  3. . Example February 15th, 2011 Biostatistics 615/815 - Lecture 12 Hyun Min Kang Are H and P independent given S ? . An example graphical model Summary . 3 / 27 Viterbi HMM Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . *% 1% !% ;(0<-=4% ./<44% 658(49$32":% >3<5$32% 6?3,0<,:3% 12344+23% !"#$% *+,,-% 12343,5% &'()% &./(+0-% &6743,5% 12@1B*A % 12@!A % 12@*B!A % • Are H and P independent?

  4. . Viterbi February 15th, 2011 Biostatistics 615/815 - Lecture 12 Hyun Min Kang . An example graphical model Summary . Example 3 / 27 HMM Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . *% 1% !% ;(0<-=4% ./<44% 658(49$32":% >3<5$32% 6?3,0<,:3% 12344+23% !"#$% *+,,-% 12343,5% &'()% &./(+0-% &6743,5% 12@1B*A % 12@!A % 12@*B!A % • Are H and P independent? • Are H and P independent given S ?

  5. . Description (S) Low 0 Cloudy 0 Description (H) H S 1 . . . . . . 0.7 Sunny . Sunny February 15th, 2011 Biostatistics 615/815 - Lecture 12 Hyun Min Kang 0.9 High 1 1 0 0.1 High 1 Cloudy 0 0.3 Low . 4 / 27 . . . . . . . . . . . . . . . Graphical Models HMM Viterbi Example . Summary Example probability distribution . . . . . 0.7 High 1 0.3 Low 0 Description (H) Value (H) . . . . . . . . . . . . . . . . . . . . Pr ( H ) Pr ( H ) Pr ( S | H ) Pr ( S | H )

  6. . 0 Description (S) 0 Absent 0 Cloudy 0.5 1 Present 0 Cloudy 0.5 Absent . 1 Sunny 0.1 1 Present 1 Sunny 0.9 Hyun Min Kang Biostatistics 615/815 - Lecture 12 February 15th, 2011 S Description (P) P Summary . . . . . . . . . . . . . Graphical Models HMM Viterbi Example . . Probability distribution (cont’d) . . . . . . . . 5 / 27 . . . . . . . . . . . . . . . . Pr ( P | S ) Pr ( P | S )

  7. . 1 1 0.105 0 1 0 0.009 0 1 1 0.081 1 0 0 0.035 0 . 1 0.035 1 1 0 0.063 1 1 1 0.567 increases exponentially Hyun Min Kang Biostatistics 615/815 - Lecture 12 February 15th, 2011 0 0 0.105 . . . . . . . . . . . . . . Graphical Models HMM Viterbi Example . Summary 0 Full joint distribution . . 0 0 P S H . . . . . . 6 / 27 . . . . . . . . . . . . . . . . Pr ( H , S , P ) Pr ( H , S , P ) • With a full join distribution, any type of inference is possible • As the number of variables grows, the size of full distribution table

  8. . . 0 S P S H . . . . . . 0.750 . . 0.7875 1 1 1 0.0875 1 0 1 0 0 . 1 February 15th, 2011 Biostatistics 615/815 - Lecture 12 Hyun Min Kang 0.900 1 1 0.875 1 1 0.100 0 0 0.125 1 0 0.500 0 1 0.250 0 1 0.500 0.1125 1 1 . H . . . . . . . . Summary S . Example Viterbi HMM Graphical Models . . . . . . . . . . . . . 0 P 7 / 27 1 0.1250 0 1 1 0.1250 0 1 0 0 0.3750 0 1 0 0.3750 0 0 0 0.0125 0 . . . . . . . . . . . . . . . . Pr ( H , P | S ) = Pr ( H | S ) Pr ( P | S ) Pr ( H , P | S ) Pr ( H , P | S ) Pr ( H | S ) , Pr ( P | S ) Pr ( H | S ) Pr ( P | S )

  9. . Viterbi February 15th, 2011 Biostatistics 615/815 - Lecture 12 Hyun Min Kang . H and P are conditionally independent given S Summary . Example 8 / 27 . HMM Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . *% 1% !% ;(0<-=4% ./<44% 658(49$32":% >3<5$32% 6?3,0<,:3% 12344+23% !"#$% *+,,-% 12343,5% &'()% &./(+0-% &6743,5% 12@!A % 12@1B*A % 12@*B!A % • H and P do not have direct path one from another • All path from H to P is connected thru S . • Conditioning on S separates H and P

  10. . Viterbi February 15th, 2011 Biostatistics 615/815 - Lecture 12 Hyun Min Kang . Summary . Example Conditional independence in graphical models 9 / 27 HMM . Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . '()!+ " !" '()#*!+ " #" '()$*#+ " '()&*#+ " '()%*#+ " $" %" &" • Pr ( A , C , D , E | B ) = Pr ( A | B ) Pr ( C | B ) Pr ( D | B ) Pr ( E | B )

  11. . . February 15th, 2011 Biostatistics 615/815 - Lecture 12 Hyun Min Kang dependency), A is independent of all the other nodes. Markov Blanket Summary . Example 10 / 27 Viterbi HMM Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • If conditioned on the variables in the gray area (variables with direct • A ⊥ ( U − A − π A ) | π A

  12. . Viterbi February 15th, 2011 Biostatistics 615/815 - Lecture 12 Hyun Min Kang . Hidden Markov Models - An Example Summary . Example 11 / 27 HMM Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345$ 348$ 346$ %&'$ !"#!$ 347$ 3466$ 3493$ ()**+$ 3493$ 3483$ ,-.)/+$ 3435$ 34:3$ 012*+$

  13. . Viterbi February 15th, 2011 Biostatistics 615/815 - Lecture 12 Hyun Min Kang . An alternative representation of HMM Summary . Example 12 / 27 HMM Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . !" ()*# " # $ # % # & # - $"# - %$# !" - &/&0"1# ! "# ! $# ! %# ! &# +,-,*+# 3 !" /' " 1 # 3 !$ /' $ 1 # 3 !% /' % 1 # 3 !& /' & 1 # !" ' "# ' $# ' %# ' &# .-,-# 2 #

  14. . Summary February 15th, 2011 Biostatistics 615/815 - Lecture 12 Hyun Min Kang t q t t . t q Marginal likelihood of data in HMM 13 / 27 . Example . . . . . . . . . . . HMM . . Graphical Models Viterbi . . . . . . . . . . . . . . . . • Let λ = ( A , B , π ) • For a sequence of observation o = { o 1 , · · · , o t } , ∑ Pr ( o | λ ) = Pr ( o | q , λ ) Pr ( q | λ ) ∏ ∏ Pr ( o | q , λ ) = Pr ( o i | q i , λ ) = b q i ( o i ) i =1 i =1 ∑ Pr ( q | λ ) = π q 1 a q i q i − 1 i =2 ∑ ∏ Pr ( o | λ ) = π q 1 b q 1 ( o q 1 ) a q i q i − 1 b q i ( o q i ) i =2

  15. . Example February 15th, 2011 Biostatistics 615/815 - Lecture 12 Hyun Min Kang . t t Forward and backward probabilities Summary . 14 / 27 . . HMM . Graphical Models . . . . . . . . . . Viterbi . . . . . . . . . . . . . . . . q + = ( q 1 , · · · , q t − 1 ) , t = ( q t +1 , · · · , q T ) q − o + = ( o 1 , · · · , o t − 1 ) , t = ( o t +1 , · · · , o T ) o − Pr ( q t = i , o | λ ) Pr ( q t = i , o | λ ) Pr ( q t = i | o , λ ) = = Pr ( o | λ ) ∑ n j =1 Pr ( q t = j , o | λ ) t , o t , o + Pr ( q t , o | λ ) = Pr ( q t , o − t | λ ) Pr ( o + = t | q t , λ ) Pr ( o − t | q t , λ ) Pr ( o t | q t , λ ) Pr ( q t | λ ) Pr ( o + = t | q t , λ ) Pr ( o − t , o t , q t | λ ) = β t ( q t ) α t ( q t ) If α t ( q t ) and β t ( q t ) is known, Pr ( q t | o , λ ) can be computed in a linear time.

  16. . Example February 15th, 2011 Biostatistics 615/815 - Lecture 12 Hyun Min Kang n n . DP algorithm for calculating forward probability Summary . n 15 / 27 Graphical Models . . . . Viterbi . . . . . . . . . HMM . . . . . . . . . . . . . . . . • Key idea is to use ( q t , o t ) ⊥ o − t | q t − 1 . α t ( i ) = Pr ( o 1 , · · · , o t , q t = i | λ ) ∑ = Pr ( o − t , o t , q t − 1 = j , q t = i | λ ) j =1 ∑ = Pr ( o − t , q t − 1 = j | λ ) Pr ( q t = i | q t − 1 = j , λ ) Pr ( o t | q t = i , λ ) j =1 ∑ = α t − 1 ( j ) a ij b i ( o t ) j =1 α 1 ( i ) = π i b i ( o 1 )

  17. . Viterbi February 15th, 2011 Biostatistics 615/815 - Lecture 12 Hyun Min Kang . Conditional dependency in forward-backward algorithms Summary . Example 16 / 27 HMM Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • Forward : ( q t , o t ) ⊥ o − t | q t − 1 . • Backward : o t +1 ⊥ o + t +1 | q t +1 . !" !" "#$ % " % "&$ % !" !" ! "#$% ! "% ! "&$% !" !" ' "#$% ' "% ' "&$%

  18. . Example February 15th, 2011 Biostatistics 615/815 - Lecture 12 Hyun Min Kang n n . DP algorithm for calculating backward probability Summary . n 17 / 27 Graphical Models . . . . Viterbi . . . . . . . . . HMM . . . . . . . . . . . . . . . . • Key idea is to use o t +1 ⊥ o + t +1 | q t +1 . β t ( i ) = Pr ( o t +1 , · · · , o T | q t = i , λ ) ∑ Pr ( o t +1 , o + = t +1 , q t +1 = j | q t = i , λ ) j =1 ∑ Pr ( o t +1 | q t +1 , λ ) Pr ( o + = t +1 | q t +1 = j , λ ) Pr ( q t +1 = j | q t = i , λ ) j =1 ∑ = β t +1 ( j ) a ji b j ( o t +1 ) j =1 β T ( i ) = 1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend