hidden markov models biostatistics 615 815 lecture 10
play

Hidden Markov Models Biostatistics 615/815 Lecture 10: . . - PowerPoint PPT Presentation

. Biased Coin October 4th, 2012 Biostatistics 615/815 - Lecture 10 Hyun Min Kang October 4th, 2012 Hyun Min Kang Hidden Markov Models Biostatistics 615/815 Lecture 10: . . Summary . 1 / 33 . Viterbi Forward-backward HMM Recap . .


  1. . Biased Coin October 4th, 2012 Biostatistics 615/815 - Lecture 10 Hyun Min Kang October 4th, 2012 Hyun Min Kang Hidden Markov Models Biostatistics 615/815 Lecture 10: . . Summary . 1 / 33 . Viterbi Forward-backward HMM Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  2. . Viterbi October 4th, 2012 Biostatistics 615/815 - Lecture 10 Hyun Min Kang computation. min . Manhattan Tourist Problem Summary . Biased Coin 2 / 33 . . . . Forward-backward HMM . . . Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . • Let C ( r , c ) be the optimal cost from (0 , 0) to ( r , c ) • Let h ( r , c ) be the weight from ( r , c ) to ( r , c + 1) • Let v ( r , c ) be the weight from ( r , c ) to ( r + 1 , c ) • We can recursively define the optimal cost as  { C ( r − 1 , c ) + v ( r − 1 , c ) r > 0 , c > 0   C ( r , c − 1) + h ( r , c − 1)    C ( r , c ) = C ( r , c − 1) + h ( r , c − 1) r = 0 , c > 0 C ( r − 1 , c ) + v ( r − 1 , c ) r > 0 , c = 0     0 r = 0 , c = 0  • Once C ( r , c ) is evaluated, it must be stored to avoid redundant

  3. . . October 4th, 2012 Biostatistics 615/815 - Lecture 10 Hyun Min Kang Edit Distance Problem Summary . Biased Coin Viterbi Forward-backward HMM Recap . . . . . . . 3 / 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  4. . Biased Coin October 4th, 2012 Biostatistics 615/815 - Lecture 10 Hyun Min Kang otherwise min j i . Dynamic Programming for Edit Distance Problem Summary . 4 / 33 HMM Forward-backward . . . . . . . Recap Viterbi . . . . . . . . . . . . . . . . . . . . . . . . . . . . • Input strings are x [1 , · · · , m ] and y [1 , · · · , n ] . • Let x i = x [1 , · · · , i ] and y j = y [1 , · · · , j ] be substrings of x and y . • Edit distance d ( x , y ) can be recursively defined as follows  j = 0   i = 0      d ( x i , y j ) = d ( x i − 1 , y j ) + 1   d ( x i , y j − 1 ) + 1      d ( x i − 1 , y i − 1 ) + I ( x [ i ] ̸ = y [ j ])   • Similar to the Manhattan tourist problem, but with 3-way choice. • Time complexity is Θ( mn ) .

  5. . Viterbi October 4th, 2012 Biostatistics 615/815 - Lecture 10 Hyun Min Kang states can be obtained. Markov process Hidden Markov Models (HMMs) Summary . Biased Coin . 5 / 33 Forward-backward HMM Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • A Markov model where actual state is unobserved • Transition between states are probabilistically modeled just like the • Typically there are observable outputs associated with hidden states • The probability distribution of observable outputs given an hidden

  6. . Viterbi October 4th, 2012 Biostatistics 615/815 - Lecture 10 Hyun Min Kang . An example of HMM Summary . Biased Coin 6 / 33 Forward-backward HMM Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345$ 348$ 346$ !"#!$ %&'$ 347$ 3466$ 3493$ ()**+$ 3493$ 3483$ ,-.)/+$ 3435$ 34:3$ 012*+$ • Direct Observation : (SUNNY, CLOUDY, RAINY) • Hidden States : (HIGH, LOW)

  7. S i , S j q t b q t o t b S i O j O j q t . S i Initial States i Pr q Transition A ij Pr q t Emission B ij A O Pr o t S i B Hyun Min Kang Biostatistics 615/815 - Lecture 10 October 4th, 2012 (SUNNY, CLOUDY, RAINY) O . O . . . . . . . Recap HMM Forward-backward Viterbi Biased Coin . Summary Mathematical representation of the HMM example Outcomes O 7 / 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . States S = { S 1 , S 2 } = (HIGH, LOW)

  8. S i , S j q t b q t o t b S i O j O j q t A Pr q Transition A ij Pr q t S i . Emission B ij Initial States Pr o t S i B Hyun Min Kang Biostatistics 615/815 - Lecture 10 October 4th, 2012 i 7 / 33 . . Mathematical representation of the HMM example Summary . Biased Coin . Viterbi . Forward-backward . HMM Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . States S = { S 1 , S 2 } = (HIGH, LOW) Outcomes O = { O 1 , O 2 , O 3 } = (SUNNY, CLOUDY, RAINY)

  9. S j q t b q t o t b S i O j O j q t . Pr q t S i A Emission B ij Pr o t . S i B Hyun Min Kang Biostatistics 615/815 - Lecture 10 October 4th, 2012 Transition A ij 7 / 33 Mathematical representation of the HMM example . . . . . . Biased Coin . Viterbi . Forward-backward Summary HMM Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . States S = { S 1 , S 2 } = (HIGH, LOW) Outcomes O = { O 1 , O 2 , O 3 } = (SUNNY, CLOUDY, RAINY) Initial States π i = Pr ( q 1 = S i ) , π = { 0 . 7 , 0 . 3 }

  10. . Viterbi October 4th, 2012 Biostatistics 615/815 - Lecture 10 Hyun Min Kang . Mathematical representation of the HMM example Summary . Biased Coin 7 / 33 Forward-backward HMM Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . States S = { S 1 , S 2 } = (HIGH, LOW) Outcomes O = { O 1 , O 2 , O 3 } = (SUNNY, CLOUDY, RAINY) Initial States π i = Pr ( q 1 = S i ) , π = { 0 . 7 , 0 . 3 } Transition A ij = Pr ( q t +1 = S j | q t = S i ) ( 0 . 8 ) 0 . 2 A = 0 . 4 0 . 6 Emission B ij = b q t ( o t ) = b S i ( O j ) = Pr ( o t = O j | q t = S i ) ( 0 . 88 ) 0 . 10 0 . 02 B = 0 . 10 0 . 60 0 . 30

  11. . Biased Coin October 4th, 2012 Biostatistics 615/815 - Lecture 10 Hyun Min Kang The chance of rain in day 4 is 23.3% . . . What is the chance of rain in the day 4? . Unconditional marginal probabilities Summary . 8 / 33 Viterbi . Forward-backward HMM Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 0 . 669 ( Pr ( q 4 = S 1 ) ) ) = ( A T ) 3 π = f ( q 4 ) = Pr ( q 4 = S 2 ) 0 . 331     Pr ( o 4 = O 1 ) 0 . 621  = B T f ( q 4 ) = g ( o 4 ) = Pr ( o 4 = O 2 ) 0 . 266    Pr ( o 4 = O 3 ) 0 . 233

  12. . Biased Coin October 4th, 2012 Biostatistics 615/815 - Lecture 10 Hyun Min Kang t q t t . q Marginal likelihood of data in HMM Summary . t 9 / 33 HMM Forward-backward . . . . . . . Recap Viterbi . . . . . . . . . . . . . . . . . . . . . . . . . . . . • Let λ = ( A , B , π ) • For a sequence of observation o = { o 1 , · · · , o t } , ∑ Pr ( o | λ ) = Pr ( o | q , λ ) Pr ( q | λ ) ∏ ∏ Pr ( o | q , λ ) = Pr ( o i | q i , λ ) = b q i ( o i ) i =1 i =1 ∏ Pr ( q | λ ) = π q 1 a q i − 1 q i i =2 ∑ ∏ Pr ( o | λ ) = π q 1 b q 1 ( o 1 ) a q i − 1 q i b q i ( o i ) i =2

  13. . Viterbi October 4th, 2012 Biostatistics 615/815 - Lecture 10 Hyun Min Kang of observations t q Naive computation of the likelihood . . Biased Coin Summary 10 / 33 . Forward-backward HMM . . Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∑ ∏ Pr ( o | λ ) = π q 1 b q 1 ( o 1 ) a q i − 1 q i b q i ( o i ) i =2 • Number of possible q = 2 t are exponentially growing with the number • Computational would be infeasible for large number of observations • Algorithmic solution required for efficient computation.

  14. . . October 4th, 2012 Biostatistics 615/815 - Lecture 10 Hyun Min Kang each day? from day 1 through day 5, what is the distribution of hidden states for More Markov Chain Question Summary . Biased Coin Viterbi Forward-backward HMM Recap . . . . . . . 11 / 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . • If the observation was (SUNNY,SUNNY,CLOUDY,RAINY,RAINY) • Need to know Pr ( q t | o , λ )

  15. . Viterbi October 4th, 2012 Biostatistics 615/815 - Lecture 10 Hyun Min Kang . t t Forward and backward probabilities Summary . Biased Coin 12 / 33 . . Forward-backward HMM . Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . q + = ( q 1 , · · · , q t − 1 ) , t = ( q t +1 , · · · , q T ) q − o + = ( o 1 , · · · , o t − 1 ) , t = ( o t +1 , · · · , o T ) o − Pr ( q t = i , o | λ ) Pr ( q t = i , o | λ ) Pr ( q t = i | o , λ ) = = Pr ( o | λ ) ∑ n j =1 Pr ( q t = j , o | λ ) t , o t , o + Pr ( q t , o | λ ) = Pr ( q t , o − t | λ ) Pr ( o + = t | q t , λ ) Pr ( o − t | q t , λ ) Pr ( o t | q t , λ ) Pr ( q t | λ ) Pr ( o + = t | q t , λ ) Pr ( o − t , o t , q t | λ ) = β t ( q t ) α t ( q t ) If α t ( q t ) and β t ( q t ) is known, Pr ( q t | o , λ ) can be computed in a linear time.

  16. . Biased Coin October 4th, 2012 Biostatistics 615/815 - Lecture 10 Hyun Min Kang n n n . DP algorithm for calculating forward probability Summary . 13 / 33 Viterbi . . . . Recap . . . Forward-backward HMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . • Key idea is to use ( q t , o t ) ⊥ o − t | q t − 1 . • Each of q t − 1 , q t , and q t +1 is a Markov blanket. α t ( i ) = Pr ( o 1 , · · · , o t , q t = i | λ ) ∑ = Pr ( o − t , o t , q t − 1 = j , q t = i | λ ) j =1 ∑ = Pr ( o − t , q t − 1 = j | λ ) Pr ( q t = i | q t − 1 = j , λ ) Pr ( o t | q t = i , λ ) j =1 ∑ = α t − 1 ( j ) a ji b i ( o t ) j =1 α 1 ( i ) = π i b i ( o 1 )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend