continuum branching observable in higher genus
play

Continuum Branching Observable in Higher Genus (Based on Discussion - PowerPoint PPT Presentation

Continuum Branching Observable in Higher Genus (Based on Discussion with Nicolai Reshetikhin) Matthew Bernard mattb@berkeley.edu Advanced Computational Biology Center , Berkeley Supported by The Lynn Bit Foundation , State of California


  1. Continuum Branching Observable in Higher Genus (Based on Discussion with Nicolai Reshetikhin) Matthew Bernard mattb@berkeley.edu Advanced Computational Biology Center , Berkeley Supported by The Lynn Bit Foundation , State of California

  2. Abstract 2 We prove : R -valued partition invariant in supersymmetry for all fjxed suffjcient large genus g ⩾ 0 multiedge embedding ; and , the O ( n 3 ) bipartite observable in Grassmann kernel transfer matrices on discrete functions for all spanning dual trees . In special hexagonal domain , we prove the free Dirac Fermion convergence Ψ= f · (1 + O (1)) on logarithmic discriminant steepest descent of Grassmann kernel asymptotics . We conjecture : In large deviation , Green’s function G for Dirichlet problem of variational principle minimizer is observable in the kernel asymptotics . Keywords: Continuum-branching , Higher-genus , Observable

  3. 1 Characterizations for triangular grids 3 • ◦ Bipartite implies no adjacent-black (-white) vertices for all V X = V X ⊔ V X : M × N vertices , ( M − 1) × ( N − 1) path cartesian latticial edges ; 2 n = MN. Instance . 1 6 12 18 1 2 3 4 2 7 13 19 24 3 8 14 20 25 5 6 7 8 4 9 15 21 26 5 10 16 22 27 9 10 11 12 . 11 17 23 28 Non-instance . 1 2 3 4 � no bipartite structure � . 5 6 7 8 9 10 11 12

  4. 1.1 Partition function on topological embedding 4 ∀ g ≫ , an embedding X ⊂ M g | V X = ( i ℓ ; i ℓ = i ξ � = j ℓ , ∀ i � = j ) is partition σ ∈ Aut ( D ) ⇐ ⇒ perfect-matching D ⇐ ⇒ | i ℓ ∩ D | = 1 , ∀ i ℓ ∈ V X , and � ℓ � = ξ ∈ D ( i ℓ , j ξ ) = ∅ ; for D =( D, ∀ ℓ ); M g orientable compact , X closed ; 1 6 2 5 7 8 3 4 � � � equals � � ∂D = V i.e ., 1 ℓ � = ξ σ D ( i ℓ j ℓ ) defjned as : X 2 � � � � 1 if ℓ ∈ D Aut ( D ) | − 1 | Aut ( D ) | · | σ � � � = 0 ⇐ ⇒ ( i ℓ , j ξ ) � = ∅ � σ D ( i ℓ j ℓ )= exp { n ln 2 + � n − 1 0 if ℓ �∈ D k =2 ln k } ℓ � = ξ ∈ D X = ( i ℓ | i =1 , . . . , 2 n ; ∀ n ⩽ | ℓ | < ∞ , n ∈ N + ) , and for all V X ⊂ M g is CW cell-complex i.e . face ≈ topological disk i.e . no hole .

  5. 5 2 4 2 1 3 5 1 3 6 8 10   7 9 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0     1 0 1 0 0 1 1 1 0 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   5     1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1   0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1       0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  1 1 1 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1           0 0 1 1 0 0 0 1 1 1  0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1         1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0     1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1         1 1 1 0 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1       1 1 1 1 1 1 1 0 1 1  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0     0 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1   0 ( σ D ( i ℓ j ℓ )) := 0 0 0 0 0 0 ⇐ ⇒ ℓ �∈ D , 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 & 1 1 1 1 1 1 1 1 , 1 1 1 1 1 1 , 1 1 1 1 1 1 1 1 1 1 ⇐ ⇒ ℓ ∈ D .

  6. 6 � � � 2 )) ∼ ∼ ( Aut ( D ) / ( S n ×S n = { � = σ σ } Aut ( D ) } ∼ � = ( S n ×S n Aut ( D ) Derivation. (i) { σ 2 ) � (2 n )! · 2 − ((1 / ε ) mod c ( X K )) · e ln ( a ( X K ) · b ( X K )) � 1 / (2 | D | ) σ }| 1 / | D | ⩽ (ii) |{ � � n ! · a ( X K ) · b ( X K ) � � a, b, c ∈ R + ; n ⩾ 2; for min(deg( X K )) ⩾ ⌊ 2 n − 3 ⌋ !! = � ⌊ n ⌋− 2 2 k +1 k =0 − X K ∋ σ :=( σ (1) , . . . , σ (2 n )); � Im ( Aut ( D )) ← σ = σ | σ (2 ℓ ) > σ (2 ℓ − 1); S n := { ( σ (1) , . . . , σ (2 n )) , . . . , ( σ (2 n − 1) , σ (2 n ) , . . . , σ (1) , σ (2)) } S n 2 := { ( σ (1) , . . . , σ (2 n )) , . . . , ( σ (2) , σ (1) , . . . , σ (2 n ) , σ (2 n − 1)) } for objects : 1 2 3 4 6 11 30 1 14 15 5 6 7 8 66 5 10 19 29 2 13 16 9 10 11 12 • Square grid domains . 4 9 • (regular) Hexagonal grid domains .

  7. 7 correlation (conditional probability) equals def By E [ σ D ( i ℓ j ℓ ) σ D ( i ξ j ξ )] = E [ σ D ( i ℓ j ℓ )] ⇐ ⇒ ℓ = ξ , resp . 0 ⇐ ⇒ σ D ( i ℓ j ℓ ) = 0 or ( i ℓ j ℓ ) , ( i ξ j ξ ) | ℓ � = ξ share vertex : The local observable i.e . dimer-dimer � k � � � k � � σ D ( i ℓ j ℓ ) = = Prob ( i 1 j 1 ∈ D, . . . , i k j k ∈ D ) = E σ D ( i ℓ j ℓ ) ℓ = 1 ℓ = 1 � � σ D ( i ℓ j ℓ ) � k ω ℓ k � � D ∈ D ℓ = 1 ℓ ∈ D � � σ D ( i ℓ j ℓ ) × Prob ( D ) = ω ℓ D ∈ D ℓ = 1 ℓ ∈ D D ∈ D � � � ⇒ 1 Ξ ( · ) � e − � = 0 ⇐ ω D � K T , ω ( · ) = Ξ ( · ) = Ξ ℓ � Z � D ∋ ( i 1 j 1 ) , ..., ( i k j k ) ℓ ∈ ( · ) ℓ ∈ ( · ) � � � � � � � � � Z def = = ω ℓ = Prob ( D ) ⇐ ⇒ = ∅ D ( i ℓ j ℓ ) � D ∈ D ℓ ∈ D D ∈ D for strict-sense positive partition function Z on Boltzmann weights ω ( · ) by → R + | ℓ �− X − → Ξ ℓ . Ξ : E

  8. 1.2 (i) Measure-preserving notion of spanning dual trees 8 Proposition (combinatorial-equivalence). Given a dimer space (resp . tiling space) , there exits one-to-one combinatorial correspondence: → family (Tilings) . family (Dimers) ← Proof . Let X ⊂ R 2 be planar (no intersected edge) orientable . That is , 2 D cell complex on X (union of all spanning trees T ) : 0 -cells , 1 -cells , 2 -cells = vertices , edges , faces , resp . 1 12 11 Disjoint interiors . 2 3 10 4 7 dim( ∂X ( k ) ) = ( k − 1) mod 2 9 ∂X ( k ) = boundary of two k -cells , 14 13 k = 0 , 1 , 2 . 5 6 8 Remark . X ⊂ M g is generally , 1 -skeleton CW-complex (resp. orientable , compact genus g cell-decomposition) .

  9. (ii) cell complex 9 2 D dual cell complex on X ∗ (union of all spanning dual trees T ∗ ) : 0 -cells , 1 -cells , 2 -cells = resp . “ centers ” of 2 -cells , 1 -cells , 0 -cells of X : 1 12 11 22 23 21 X ∗ = dual 2 3 10 25 15 27 4 7 18 to X. 16 9 13 14 26 19 5 17 6 8 Unique pair of 2 -cells on X ∗ share : (iii) For a dimer on X : 1 1 11 11 22 23 21 2 2 3 3 10 10 25 15 4 4 7 7 (iv) Therefore , the global bijection : � Tilings of X ∗ by � (Dimers on X ) . □ ← → unique pair of 2 -cells

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend