continuum branching observable in higher genus
play

Continuum Branching Observable in Higher Genus (Based on Discussion - PowerPoint PPT Presentation

Continuum Branching Observable in Higher Genus (Based on Discussion with Nicolai Reshetikhin) Matthew Bernard mattb@berkeley.edu Advanced Computational Biology Center , Berkeley Supported by The Lynn Bit Foundation , State of California


  1. Continuum Branching Observable in Higher Genus (Based on Discussion with Nicolai Reshetikhin) Matthew Bernard mattb@berkeley.edu Advanced Computational Biology Center , Berkeley Supported by The Lynn Bit Foundation , State of California

  2. Abstract 2 For all fjxed suffjciently large genus g =0 , 1 , ⩾ 2 , multiedge connected , dual graph , we give a uniform bipartite observable of Grassmann kernel transfer matrices . On special hexagonal domain , we prove discriminant steepest descent of Grassmann kernel logarithmic asymptotics , and free Dirac Fermion convergence Ψ 12 × (1+ O (1)) . We conjecture : In large deviation functional , the Green’s function G for Dirichlet problem of variational principle minimizer is observable in the kernel asymptotics . Keywords: Continuum-branching , higher-genus , observable

  3. 1 Characterizations for triangular grids 3 • ◦ Bipartite implies no adjacent-black (-white) vertices for all V X = V X ⊔ V X : � � � � ξ ∩ D : � • i • ξ � = η ( i • ξ , i • η , D )= ∅ ξ = { i ξ , j ξ } : i � = j, | i ξ ∩ D | =1 V X = ; D = . Instance . 1 6 12 18 1 2 3 4 2 7 13 19 24 3 8 14 20 25 5 6 7 8 4 9 15 21 26 5 10 16 22 27 9 10 11 12 . 11 17 23 28 Non-instance . 1 2 3 4 � no bipartite structure � . 5 6 7 8 9 10 11 12

  4. 4 Derivation. R n r . v .X =( X i ξ j ξ ; i ξ , j ξ ∈ V X ) is Gaussian G ifg X = µ a . s ., for � � � � it ′ µ − 1 � E [exp( it ′ X )] = exp 2 t ′ Σ t � µ ξ = E [ X i ξ j ξ ] , Σ ξη = cov [ X i ξ j ξ , X i η j η ] � − ( X − µ ) T Σ − 1 ( X − µ ) � 1 ⇐ ⇒ P { X ∈ dx } = � exp dx (2 π ) n det Σ 2 ifg t ′ X = � ξ t ξ X i ξ j ξ is R - G, ∀ t ∈ R n , where X is R - G ifg X = µ a . s ., for � � � � i µ t − Σ t 2 � � µ = E [ X ] , Σ = var [ X ] , ∀ t ∈ R E [exp( itX )] = exp 2 � � − ( X − µ ) 2 1 ⇐ ⇒ P { X ∈ dx } = √ exp dx 2Σ 2 π Σ ⇒ X is R n - G ; ifg X i ξ j ξ ∈ X is independent ( Σ ξ , η � = ξ = 0 ) ⇐ where X is absolutely continuous ifg Σ is non-singular .

  5. Derivation. ifg a.s. 5 √− 1 H , U T U = UU T = I ; = X ifg centered X ∈ R n , Hermitian H | U = e UX d � � is uniformly distributed on S n − 1 = X X x ∈ R n : � x � =1 � X � = � n � X 2 i ξ j ξ ξ =1 where X is standard ifg centered ( µ =0 ) and Σ= I | X i ξ j ξ ∼ N (0 , 1) . Derivation. For n centered Gaussian , resp . Maxwell , particle velocity X, � � � � � 2Σ t 2 � n � − 1 � t 2 1 + · · · + t 2 E [ itX ] = Φ( t ξ ) = Φ � Φ( t ) = exp n ξ =1 � � � � � 2Σ t 2 � 3 � − 1 � t 2 1 + t 2 2 + t 2 resp . E [ itX ] = Φ( t ξ ) = Φ � Φ( t ) = exp , Σ ⩾ 0 . 3 ξ =1 Remark. Taking n − → + ∞ , for support S, continuous density f ( x ): − 1 n log f ⊗ n ( X i 1 j 1 , . . . , X i n j n ) � f ( x ) log f ( x ) = 1 − → E [ − log f ( X )] = − 2 log(2 πe Σ) . S

  6. 1.1 is Partition 6 � � i ξ ∩ D : � Defjnition. An embedding X ⊂M g | V ξ � = η ( i ξ , i η , D )= ∅ X = � � partition σ ∈ Aut ( D ) ifg perfect-matching D = ξ = { i ξ , j ξ } : i � = j, | i ξ ∩ D | =1 ; D = { D, ∀ ξ } , M g orientable compact , X closed , g ≫ . 1 6 2 5 7 8 3 4 That is , σ implies � � 1 if ξ ∩ D � � � σ }| ) − 1 | Aut ( D ) | · ( |{ � 1 � � ∂D = V � = � σ i ξ j ξ = σ i ξ j ξ � � = n ln 2 + � n − 1 X 2 0 otherwise exp k =1 ln k ξ σ = σ | σ 2 ξ > σ 2 ξ − 1 ; ξ , n ∈ N + X =( i ξ ∩ D : | i ξ | =2 n ); σ =( σ 1 , . . . , σ 2 n ) , � V where X ⊂ M g is CW cell-complex i.e . face ≈ topological disk i.e . no hole .

  7. 7 2 )) ∼ = [ σ ] ∼ Derivation. (i) { [ σ ] } ∼ 2 ) ( Aut ( D ) / ( S n ×S n = { � σ } = ( S n ×S n � (2 n )! · 2 − ((1 / ε ) mod c ( X )) · e ln ( a ( X ) · b ( X )) � 1 / (2 | D | ) σ }| 1 / | D | ⩽ (ii) |{ � � � a, b, c ∈ R + ; n ⩾ 2; n ! · a ( X ) · b ( X ) � where min(deg( X )) ⩾ ⌊ 2 n − 3 ⌋ !! = � ⌊ n ⌋− 2 X i ξ j ξ ≡ X σ 2 ξ − 1 σ 2 ξ 2 k +1 k =0 S n ∼ = { ( σ 1 , . . . , σ 2 n ) , . . . , ( σ 2 n − 1 , σ 2 n , . . . , σ 1 , σ 2 ) } ; σ ∈ S 2 n − → Im ( Aut ( D )) � 2 ∼ � S n = { ( σ 1 , . . . , σ 2 n ) , . . . , ( σ 2 , σ 1 , . . . , σ 2 n , σ 2 n − 1 ) } ; [ σ ]= { σ Aut ( D ) } � (2 n )! � (iii) (2 n )(2 n − 1) = 2 = | E X | holds for complete graph X = K 2 n n !2 n 2 on objects : 1 2 3 4 6 11 30 1 14 15 5 6 7 8 66 5 10 19 29 2 13 16 9 10 11 12 • square grid domains . 4 9 • (regular) hexagonal grid domains .

  8. 8 def which equals By E [ σ i ξ j ξ σ i η j η ] = E [ σ i ξ j ξ ] ifg ξ = η , resp . zero if � ξ � = η ( i ξ , i η , D ) � = ∅ i.e . dimers of D sharing vertex : The local observable is dimer-dimer correlation i.e ., for (Boltzmann) weights ω η , the conditional probability � � � � k k � � σ i η j η σ i η j η = Prob ( i 1 ∩ D 1 , j 1 ∩ D 1 , . . . , i k ∩ D k , j k ∩ D k ) = E = η =1 η =1 � � � k σ i η j η ω ξ k � � = 1 D η η =1 ξ ∩ D η σ i η j η × Prob ( D η ) = � � Z × Z ( η | η =1 ,...,k ) ω ξ D η η =1 D ξ ∩ D � � Ξ ξ K T = e − Ξ D � � e − ⇒ 1 � ω D = ω ξ = K T ω D η � = 0 ⇐ � � Z ξ ∩ D ξ ∩ D � D η ∩ ( i 1 � = i 2 ,...i k ,j 1 ,...,j k ) � � � � � � � Ξ D = Ξ ξ , Z def = = ω ξ � = Prob ( D ) ⇐ ⇒ D = { i η , D η } D ξ ∩ D ξ ∩ D η D η for strict-sense positive partition function Z on dimer energy → R + | ( i ξ ∩ D, j ξ ∩ D ) �− X − → Ξ ξ . Ξ : E

  9. 9 def Defjnition. The space H X of height function h D or h is the whole of Z : = { { { h D : F Z } } | D ← } H X = X − → Z Z − � Bipartite surfaces � h ( F i − 1 ) + 1 / 3 if i • ξ is left on crossing ξ � ∩ D h ( F i ) = ξ is left on crossing ξ � ∩ D ; h ( F 0 ) = 0 . i − 1 ) − 1 / 3 if i ◦ h ( F Derivation. H X is given on the bipartite hexagonal X ⊂ R 2 by : 9 5 9 5 9 5 h + 2 h + 1 h + 1 3 3 3 h + 1 h + 1 h + 2 h + 2 3 , h h , 13 10 13 10 13 10 3 3 3 h + 2 h h 3 16 14 16 14 16 14 for any perfect-matching D ∈ D , and base-face normalization h D ( F 0 )=0 . Theorem. For all H X : (i) h D = h i.e . h X is path ( T ∗ ) and D independent . � � � (ii) Curl sum d X = d F = ω i ξ j ξ = 0 ifg F X is all co-cycles . F F ξ : ξ ∩ ∂ F

  10. 10 Proof Follows by divergence-free notion on X, that is , d ∗ i D 1 D 2 = d ∗ i D 1 − d ∗ i D 2 = 0 ifg F X is all co-cycles ; � +1 if i : i • ξ ∩ D � � � � fmow ω i ξ j ξ = − ω j ξ i ξ = d ∗ i D = d ∗ − 1 if i : i ◦ ω i ξ j ξ i = ξ ∩ D 0 otherwise . j ξ Defjnition. Skew plane partition is sequence { λ | λ ⊃ µ } of diagonal slices � � λ ( t ) = π i, i + t ∈ N | i ⩾ max(0 , − t ) , ∀ t ∈ Z for fjnite monotone ( π ij ⩾ π i + r, j + s ; r, s ⩾ 0 ) array in the generalized 3 D partition array π =( π ij : ( i, j ) ∈ N 2 | π ij =0 , ∀ i + j ≫ 0) of X ∗ cubes π ij . Remark. π is uniquely determined by X ∗ bijection (projection) map R 3 �− → R 2 ⊃ { ( t, h ) } : t = y − x, h = z − ( y + x ) / 2 , ∀ ( x, y, z ) ∈ R 3 for all cubes mod Z 3 ⩾ 0 projection , with boundary (base) condition (0 , 0 , 0) . The centers of the horizontal hexagonal tiling is given by . �� �� ⊂ Z × 1 π C = i − j, π ij − ( i + j − 1) / 2 2 Z .

  11. 11 Cubes : 2 D mixing algorithm 27 28 6 11 43 24 69 30 1 31 14 15 44 72 78 103 66 36 5 10 35 19 26 48 83 136 108 57 29 2 32 13 16 45 71 79 90 137 100 65 37 4 9 34 18 25 47 84 102 113 59 20 3 33 12 17 46 70 80 91 138 105 64 39 7 8 42 23 68 74 85 139 60 21 41 22 62 51 76 81 123 125 52 126 127

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend