computing igusa class polynomials
play

Computing Igusa Class Polynomials Marco Streng Universiteit Leiden - PowerPoint PPT Presentation

Genus 1 Genus 2 Computing Igusa Class Polynomials Marco Streng Universiteit Leiden Explicit Methods in Number Theory Oberwolfach, July 2009 Marco Streng Universiteit Leiden Computing Igusa Class Polynomials Genus 1 Genus 2 The Hilbert


  1. Genus 1 Genus 2 Computing Igusa Class Polynomials Marco Streng Universiteit Leiden Explicit Methods in Number Theory Oberwolfach, July 2009 Marco Streng Universiteit Leiden Computing Igusa Class Polynomials

  2. Genus 1 Genus 2 The Hilbert class polynomial Definition The Hilbert class polynomial H K of an imaginary quadratic number field K is � � � H K = X − j ( E ) ∈ Z [ X ] . { E / C : End( E ) ∼ = O K } Applications: 1. K [ X ] / H K = Hilbert class field of K 2. Elliptic curves over F p : Marco Streng Universiteit Leiden Computing Igusa Class Polynomials

  3. Genus 1 Genus 2 The Hilbert class polynomial Definition The Hilbert class polynomial H K of an imaginary quadratic number field K is � � � H K = X − j ( E ) ∈ Z [ X ] . { E / C : End( E ) ∼ = O K } Applications: 1. K [ X ] / H K = Hilbert class field of K 2. Elliptic curves over F p : if π ∈ O K , ππ = p , then ( H K mod p ) is a product of linear factors and for any root j 0 ∈ F p , exists E with j ( E ) = j 0 and # E ( F p ) = p + 1 − tr( π ) Marco Streng Universiteit Leiden Computing Igusa Class Polynomials

  4. Genus 1 Genus 2 Algorithm (sketch) 1. Bijection { E / C with CM by O K } / ∼ Cl K ↔ = [ a ] �→ C / a , a = z Z + Z with z in fund. domain: Im z > 0 , | Re z | ≤ 1 2 , | z | ≥ 1 Marco Streng Universiteit Leiden Computing Igusa Class Polynomials

  5. Genus 1 Genus 2 Algorithm (sketch) 1. Bijection { E / C with CM by O K } / ∼ Cl K ↔ = [ a ] �→ C / a , a = z Z + Z with z in fund. domain: Im z > 0 , | Re z | ≤ 1 2 , | z | ≥ 1 2. j ( a ) = q − 1 + 744 + 196884 q + 21493760 q 2 + · · · ( q = e 2 π iz ) (or smarter approximation) 3. Compute H K = � z ( X − j ( z )) ∈ Z [ X ] Marco Streng Universiteit Leiden Computing Igusa Class Polynomials

  6. Genus 1 Genus 2 Algorithms ◮ The Hilbert class polynomial is huge: the degree h K grows 1 2 , as do the logarithms of the coefficients. like | D | ◮ Three algorithms: ◮ Complex analytic method, ◮ p-adic, [Couveignes-Henocq 2002, Br¨ oker 2006] ◮ Chinese remainder theorem. [CNST 1998, ALV 2004] Marco Streng Universiteit Leiden Computing Igusa Class Polynomials

  7. Genus 1 Genus 2 Algorithms ◮ The Hilbert class polynomial is huge: the degree h K grows 1 2 , as do the logarithms of the coefficients. like | D | ◮ Three algorithms: ◮ Complex analytic method, ◮ p-adic, [Couveignes-Henocq 2002, Br¨ oker 2006] ◮ Chinese remainder theorem. [CNST 1998, ALV 2004] ◮ Under GRH or heuristics, all O ( | D | 1+ ǫ ). ◮ [BBEL 2008, Sutherland 2009] turned CRT (the underdog) into the record holder: − D > 4 · 10 12 , h K = 5 , 000 , 000. Marco Streng Universiteit Leiden Computing Igusa Class Polynomials

  8. Genus 1 Genus 2 Complex multiplication ◮ An elliptic curve has CM if End( E ) ∼ = O K with K imaginary quadratic. ◮ A curve of genus 2 has CM if End( J ( C )) ∼ = O K with K a CM field of degree 4. Marco Streng Universiteit Leiden Computing Igusa Class Polynomials

  9. Genus 1 Genus 2 Complex multiplication ◮ An elliptic curve has CM if End( E ) ∼ = O K with K imaginary quadratic. ◮ A curve of genus 2 has CM if End( J ( C )) ∼ = O K with K a CM field of degree 4. ◮ A CM field is K 0 ( √ r ) with K 0 totally real and r ∈ K 0 , r << 0. ◮ K is primitive if it does not contain an imaginary quadratic subfield. Marco Streng Universiteit Leiden Computing Igusa Class Polynomials

  10. Genus 1 Genus 2 Igusa invariants For 6 � C : y 2 = f ( x ) = a 6 ( x − α i ) , i =1 let ( ij ) = ( α i − α j ) and � a 2 (12) 2 (34) 2 (56) 2 , I 2 = 6 15 � a 4 (12) 2 (23) 2 (31) 2 (45) 2 (56) 2 (64) 2 , = I 4 6 10 � a 6 (12) 2 (23) 2 (31) 2 (45) 2 (56) 2 (64) 2 (14) 2 (25) 2 (36) 2 , I 6 = 6 60 � a 10 ( ij ) 2 = = discr . ( f ) � = 0 . I 10 6 i < j Bijection between set of genus-2 curves and points in a weighted projective 3-space. Marco Streng Universiteit Leiden Computing Igusa Class Polynomials

  11. Genus 1 Genus 2 Igusa class polynomials Simplification: i 1 = I 5 i 2 = I 3 i 3 = I 2 2 I 4 2 I 6 I 10 , 2 and I 10 . I 10 Definition The Igusa class polynomials of a primitive quartic CM field K are the polynomials � � � H K , n ( X ) = X − i n ( C ) ∈ Q [ X ] , n ∈ { 1 , 2 , 3 } . { C / C : End( J ( C )) ∼ = O K } / ∼ = Applications: ◮ Class fields ◮ Curves over finite fields Marco Streng Universiteit Leiden Computing Igusa Class Polynomials

  12. Genus 1 Genus 2 Algorithms 1. Complex analytic [Spallek 1994, Van Wamelen 1999] 2. 2-adic [GHKRW 2002] 3. Chinese remainder theorem [Eisentr¨ ager-Lauter 2005] Marco Streng Universiteit Leiden Computing Igusa Class Polynomials

  13. Genus 1 Genus 2 Algorithms 1. Complex analytic [Spallek 1994, Van Wamelen 1999] 2. 2-adic [GHKRW 2002] 3. Chinese remainder theorem [Eisentr¨ ager-Lauter 2005] No bounds on the runtime: ◮ not explicit enough, ◮ no rounding error analysis for algorithm 1, ◮ no bound on denominator, ◮ no bound on absolute values of i n ( C ). Recently, bounds on the denominator were given [Goren-Lauter 2007], [Goren (unpublished)], [Yang (special cases 2007)]. Marco Streng Universiteit Leiden Computing Igusa Class Polynomials

  14. Genus 1 Genus 2 Step 1: Enumerate ∼ = -classes K ⊗ R ∼ = R − alg. C 2 ◮ For Φ an isomorphism and a ⊂ O K , get lattice Λ = Φ( a ) ⊂ C 2 and End( C 2 / Λ) = O K Also need a principal polarization, so { (Φ , a , ξ ) } { C / C with CM by O K } ← → ∼ ∼ = Marco Streng Universiteit Leiden Computing Igusa Class Polynomials

  15. Genus 1 Genus 2 Step 1: Enumerate ∼ = -classes K ⊗ R ∼ = R − alg. C 2 ◮ For Φ an isomorphism and a ⊂ O K , get lattice Λ = Φ( a ) ⊂ C 2 and End( C 2 / Λ) = O K Also need a principal polarization, so { (Φ , a , ξ ) } { C / C with CM by O K } ← → ∼ ∼ = ◮ symplectic basis gives Λ = Z Z 2 + Z 2 with Z = Z t , Im Z > 0 Marco Streng Universiteit Leiden Computing Igusa Class Polynomials

  16. Genus 1 Genus 2 Step 2: Reduction ◮ Z is unique up to action of � � A � � A t D − C t B = 1 B Sp 4 ( Z ) = M = ∈ GL 4 ( Z ) : , A t C , D t B symmetric C D given by MZ = ( AZ + B )( CZ + D ) − 1 . ◮ Sp 4 ( Z )-reduce Z = ( z jk ), z jk = x jk + iy jk : 1. Im Z reduced: 0 ≤ 2 y 12 ≤ y 11 ≤ y 22 2. | x jk | ≤ 1 2 3. | det CZ + D | ≥ 1 for M ∈ Sp 4 ( Z ). Marco Streng Universiteit Leiden Computing Igusa Class Polynomials

  17. Genus 1 Genus 2 Step 3: Igusa invariants ◮ Thomae’s formulae gives an equation for C , given Z , in terms of θ -constants. For c 1 , c 2 ∈ { 0 , 1 2 } 2 , let � exp( π i ( v + c 1 ) Z ( v + c 1 ) t +2 π i ( v + c 1 ) c 2t ) . θ [ c 1 , c 2 ]( Z ) = v ∈ Z 2 ◮ Write out, get pol. in θ ’s j n ( Z ) = ( � all θ ’s � = 0) ∗ ◮ Compute H K , n ∈ Q [ X ]. Have θ < 2 for reduced Z , so need lower bound on θ . Marco Streng Universiteit Leiden Computing Igusa Class Polynomials

  18. Genus 1 Genus 2 Bounding θ Let Z = ( z jk ) be reduced and write z jk = x jk + iy jk . ◮ | θ [ c ]( Z ) | < 2. ◮ lower bounds on | θ [ c ]( Z ) | in terms of 1. upper bound on y 22 and 2. (weak) lower bound on | z 12 | . ◮ We know C 2 / ( Z Z 2 + Z 2 ) � = � 2 j =1 C / ( z jj Z + Z ), so z 3 � = 0, hence bound 2 follows from error analysis. Marco Streng Universiteit Leiden Computing Igusa Class Polynomials

  19. Genus 1 Genus 2 Bounding the period matrix ◮ Genus 1: given positive upper and lower bounds on Im z ′ for z ′ ∈ C , get upper bound on Im z ′ Im Az ′ = | cz ′ + d | 2 � a � b independent of A = ∈ SL 2 ( Z ) . c d ◮ Similar results for genus 2, so look for good Z ′ , only in proof. Marco Streng Universiteit Leiden Computing Igusa Class Polynomials

  20. Genus 1 Genus 2 Bounding the period matrix ◮ Genus 1: given positive upper and lower bounds on Im z ′ for z ′ ∈ C , get upper bound on Im z ′ Im Az ′ = | cz ′ + d | 2 � a � b independent of A = ∈ SL 2 ( Z ) . c d ◮ Similar results for genus 2, so look for good Z ′ , only in proof. ◮ We find Z ′ by taking a = z b + b − 1 with b ⊂ K 0 and z ∈ K . ◮ Bounds we need = upper and lower bounds on N K / Q ( b 2 ( z − z ) O K ) ◮ Lower bounds: pick z , b to maximize, use Minkowski’s convex body theorem. ◮ Upper bound from CM by K = K 0 ( √ r ). Marco Streng Universiteit Leiden Computing Igusa Class Polynomials

  21. Genus 1 Genus 2 Result Theorem Can compute the Igusa class polynomials of primitive quartic CM fields K in time O ( D 7 / 2 D 11 / 2 � ) , 1 0 where D 0 = D ( K 0 ), D = D ( K ) = D 1 D 2 0 and 2 , 3 � | D . The size of the output is between cst . ( D 1 D 0 ) 1 / 2 − ǫ O ( D 2 � 1 D 3 and 0 ) ◮ Ramification assumptions come from Goren’s unpublished work and it ‘should be’ possible to remove them. ◮ Preprint on Arxiv and on my web page http://www.math.leidenuniv.nl/ ∼ streng Marco Streng Universiteit Leiden Computing Igusa Class Polynomials

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend