computing node polynomials for plane curves
play

Computing Node Polynomials for Plane Curves Florian Block - PowerPoint PPT Presentation

Computing Node Polynomials for Plane Curves Florian Block University of Michigan FPSAC 2010 August 5, 2010 http://www-personal.umich.edu/ blockf/NodePolyTalk.pdf arXiv:1006.0218 Florian Block (U of Michigan) Computing Node Polynomials


  1. Computing Node Polynomials for Plane Curves Florian Block University of Michigan FPSAC 2010 August 5, 2010 http://www-personal.umich.edu/ ∼ blockf/NodePolyTalk.pdf arXiv:1006.0218 Florian Block (U of Michigan) Computing Node Polynomials August 5, 2010 1 / 14

  2. Combinatorial Rules in Enumerative Geometry Enumerative Geometry: counting geometric objects with certain properties. Strategy: reduce the problem to enumeration of combinatorial gadgets. Example: the Littlewood - Richardson - Rule. Why are such rules needed? This talk: Enumeration of plane curves via (marked) floor diagrams.         � �     ✲ # = # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ✉ ❡ ✉ ✉ ❡ ❡ . . . . . . . . . ✉ ❡ ❡ ✉ ✉ ❡ . . . . . . . . ✉ ❡ ❡ ✉ . . . . . . . . . . . . . . . . . . . . . . . . . . ✲ ✲ ✲ ✲ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   . . . . . . . . . . ✲ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         Florian Block (U of Michigan) Computing Node Polynomials August 5, 2010 2 / 14

  3. Counting plane curves Question How many (possibly reducible) nodal algebraic curves in CP 2 have degree d, δ nodes, and pass through ( d +3) d − δ generic points? 2 Number of such curves is the Severi degree N d ,δ . N 1 , 0 = # { lines through 2 points } = 1. N 2 , 1 = # { 1-nodal conics through 4 points } = 3 N 4 , 4 = # { 4-nodal quartics through 10 points } = 666 . If d ≥ δ + 2, a curve is irreducible by B´ ezout’s Theorem, so N d ,δ = Gromov-Witten invariant N d , g , with g = ( d − 1)( d − 2) − δ . 2 Florian Block (U of Michigan) Computing Node Polynomials August 5, 2010 3 / 14

  4. Node Polynomials Theorem (Fomin–Mikhalkin, 2009) For a fixed δ , we have N d ,δ = N δ ( d ) , for a combinatorially defined polynomial N δ ( d ) ∈ Q [ d ] , provided d ≥ 2 δ . Polynomiality was conjectured by P. Di Francesco–C. Itzykson (1994) and by L. G¨ ottsche (1997). The N δ ( d ) are called node polynomials. We have deg( N δ ( d )) = 2 δ . Florian Block (U of Michigan) Computing Node Polynomials August 5, 2010 4 / 14

  5. Chronology of Node Polynomials N d , 1 = 3( d − 1) 2 J. Steiner (1848): ( d ≥ 1) N d , 2 = 3 2 ( d − 1)( d − 2)(3 d 2 − 3 d − 11) A. Cayley (1863): ( d ≥ 1) S. Roberts (1867): N d , 3 = 9 2 d 6 − 27 d 5 + 9 2 d 4 + 423 2 d 3 − 229 d 2 − 829 2 d + 525 ( d ≥ 3) I. Vainsencher (1995): δ = 4 , 5 , 6 S. Kleiman–R. Piene (2001): δ = 7 , 8 Florian Block (U of Michigan) Computing Node Polynomials August 5, 2010 5 / 14

  6. New Node Polynomials Theorem (B.) The node polynomials N δ ( d ) , for δ = 9 , 10 , 11 , 12 , 13 , 14 , are given by . . . . Florian Block (U of Michigan) Computing Node Polynomials August 5, 2010 6 / 14

  7. New Node Polynomials Theorem (B.) The node polynomials N δ ( d ) , for δ = 9 , 10 , 11 , 12 , 13 , 14 , are given by . . . . 19683 19683 6561 1751787 4529277 562059 d 26 + d 28 − d 27 − d 25 − d 24 − d 23 N 14 ( d ) = 358758400 12812800 2562560 3942400 1971200 9856 398785599 5214288411 4860008991 63174295089 332872084467 d 22 + d 19 + d 21 − d 20 − d 18 + 788480 1254400 89600 358400 89600 3103879378581 4913807521304691 899178800016807 279086438050359453 d 16 + d 15 + d 17 − d 14 + 985600 27596800 8968960 44844800 468967272863997483 318443311640108577 328351365725506869 d 12 + d 13 − d 11 − 51251200 1971200 985600 1120586814080571923 9448861028448843949 30880785216736406143 d 10 − d 9 − d 8 + 358400 1254400 689920 444525313669622586903 11429038221675466251 269709254062572016617 d 7 + d 6 − d 5 + 3942400 24640 246400 74660630664748878665353 140531359469510983018159 16863931195154225977601 d 4 + d 3 + d 2 − 22422400 22422400 1121120 64314454486825349085 d − 32644422296329680 . − 4004 Based on an algorithm of S. Fomin–G. Mikhalkin, with improvements. Maple calculation of N 14 ( d ) took 70 days. Florian Block (U of Michigan) Computing Node Polynomials August 5, 2010 6 / 14

  8. Polynomiality Threshold Define d ∗ ( δ ) = smallest d ∗ such that d ≥ d ∗ ( δ ) implies N d ,δ = N δ ( d ). S. Fomin–G. Mikhalkin: d ∗ ( δ ) ≤ 2 δ for δ ≥ 1. Theorem (B.) For δ ≥ 1 , we have d ∗ ( δ ) ≤ δ . ottsche (1997) conjectured: d ∗ ( δ ) ≤ ⌈ δ L. G¨ 2 ⌉ + 1. Theorem (B.) For 3 ≤ δ ≤ 14 , we have d ∗ ( δ ) = ⌈ δ 2 ⌉ + 1 . For δ ≤ 8, this was established by S. Kleiman–R. Piene (2001). Florian Block (U of Michigan) Computing Node Polynomials August 5, 2010 7 / 14

  9. Leading terms of the node polynomials Theorem (B.) For any δ , the nine leading terms of N δ ( d ) are: 3 δ δ ( δ − 4) δ ( δ − 1)(20 δ − 13) » d 2 δ − 2 + d 2 δ − 2 δ d 2 δ − 1 − d 2 δ − 3 + N δ ( d ) = δ ! 3 6 δ ( δ − 1)(69 δ 2 − 85 δ + 92) δ ( δ − 1)( δ − 2)(702 δ 2 − 629 δ − 286) d 2 δ − 4 − d 2 δ − 5 + − 54 270 δ ( δ − 1)( δ − 2)(6028 δ 3 − 15476 δ 2 + 11701 δ + 4425) d 2 δ − 6 + + 3240 δ ( δ − 1)( δ − 2)( δ − 3)(13628 δ 3 − 6089 δ 2 − 29572 δ − 24485) d 2 δ − 7 + + 11340 δ ( δ − 1)( δ − 2)( δ − 3)(282855 δ 4 − 931146 δ 3 + 417490 δ 2 + 425202 δ + 1141616) # d 2 δ − 8 + · · · . − 204120 The first 7 terms were conjectured by P. Di Francesco–C. Itzykson (1994). Florian Block (U of Michigan) Computing Node Polynomials August 5, 2010 8 / 14

  10. Main Technique: (Marked) Floor Diagrams Mikhalkin’s Correspondence Theorem (2005) replaces enumeration of algebraic plane curves by weighted enumeration of tropical plane curves. E. Brugall´ e–S. Fomin–G. Mikhalkin (2007, 2009) reduced the latter to enumeration of combinatorial gadgets called (marked) floor diagrams.   ✉ ✲ ✲ ✲ ✲           ❡             ✉ . . . . .     . . . . . . . . . . . . . .     . . . . . . . . . .     . . . . . . . . . . . . . . . . # = # = # { ❡ . . . } . . . . . . . . . . . . . . . . . . . ✲ . . . . . . . . . . . . . . . . . . . . . . ✉ . . .     . . . . . . . . . . . . . . . . . . . . . .     . . . . . . . . . . . . . . . . . . .     . . . . . . . . . . . . . . . . . . . .     . . . . . . . . . . . . . . . . . . . . . . . . .     ✲ . . . . ❡ . . . . . . . . . . . . . . . . . . .   . . . . . . . . . . . . . . . . . . .   . . . . . . . . . . . . . . . . . . . . .   . . . . . . . . . . . . . . . . . . . . . .   . . . . . . ❡ . . . .   . . . . . . . . . .   . . . . . . . . . . . . . . . . . . . . . . . . . . . ❡ Florian Block (U of Michigan) Computing Node Polynomials August 5, 2010 9 / 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend