scientific computing i
play

Scientific Computing I Module 8: Discretisation of PDEs Michael - PowerPoint PPT Presentation

Scientific Computing I Michael Bader Outlines Part I: Finite Differences Part II: Finite Element Methods Scientific Computing I Module 8: Discretisation of PDEs Michael Bader Lehrstuhl Informatik V Winter 2006/2007 Scientific Part I:


  1. Scientific Computing I Michael Bader Outlines Part I: Finite Differences Part II: Finite Element Methods Scientific Computing I Module 8: Discretisation of PDEs Michael Bader Lehrstuhl Informatik V Winter 2006/2007

  2. Scientific Part I: Finite Differences Computing I Michael Bader Outlines Part I: Finite Differences Grid Generation Part II: Finite Element 1 Methods Discretisation 2 System of Linear Equations 3 Discretisation Stencil 4 Accuracy 5

  3. Scientific Part II: Finite Element Methods Computing I Michael Bader FEM Main Ingredients 6 Outlines Weak Forms and Weak Solutions 7 Part I: Finite Differences Part II: Finite Element Methods Ansatz Functions 8 Weak Solutions 9 10 Test and Ansatz Space 11 Discretisation 12 A Road to Theory 13 Choosing Basis Functions Nodal Basis 14 Element Stiffness Matrices Example: 1D Poisson Example: 2D Poisson Workflow

  4. Scientific The Model Problem Computing I Michael Bader Outlines Part I: Finite Differences Part II: Finite Element Methods 2D Poisson Equation on unit square: ∂ x 2 u ( x , y )+ ∂ 2 ∂ 2 in Ω = ( 0 , 1 ) 2 ∂ y 2 u ( x , y ) = f ( x , y ) Dirichlet boundary conditions: u ( x , y ) = g ( x , y ) on ∂ Ω

  5. Scientific Computing I Michael Bader Grid Generation Discretisation System of Linear Equations Part I Discretisation Stencil Accuracy Finite Differences

  6. Scientific Grid Generation Computing I Michael Bader Grid Generation generate a grid on the given domain Discretisation System of Linear Equations x i,j+1 h y Discretisation x i−1,j x i,j x i+1,j Stencil x i,j−1 Accuracy h z h y h x h x Compute values of unknown function u at each grid point: u ij ≈ u ( x ij ) u ijk ≈ u ( x ijk )

  7. Scientific Finite Difference Discretisation Computing I Michael Bader Replace derivatives (at each grid point) by Grid Generation difference quotients: Discretisation System of Linear ∂ 2 u Equations u ( x i + 1 , j ) − 2 u ( x i , j )+ u ( x i − 1 , j ) ∂ x 2 ( x i , j ) ≈ Discretisation h 2 Stencil x ∂ 2 u u ( x i , j + 1 ) − 2 u ( x i , j )+ u ( x i , j − 1 ) Accuracy ∂ y 2 ( x i , j ) ≈ h 2 y leads to linear system of equations ( h := h x = h y ): � 1 u i + 1 , j + u i , j + 1 − 4 u i , j h 2 � x i , j ∈ ( 0 , 1 ) 2 + u i , j − 1 + u i − 1 , j = f ( x i , j ) u ( x i , j ) = g ( x i , j ) x i , j ∈ ∂ Ω

  8. Scientific System of Linear Equations Computing I Michael Bader Grid Generation write linear system as A h x h = f h Discretisation x h = ( u 1 , 1 ,..., u 1 , n , u 2 , 1 ,..., u 2 , n ,..., u n , 1 ,..., u n , n ) System of Linear Equations A h is a sparse matrix (band structure): Discretisation Stencil   B h − I Accuracy ... ...   A h = 1 − I     ... ... h 2   − I   − I B h B h = tridiag ( − 1 , 4 , − 1 ) A h block-tridiagonal (5-diagonal) matrix boundary values to right-hand side

  9. Scientific Stencil Notation Computing I Michael Bader Grid Generation Discretisation illustrate matrix structure as a discretisation System of Linear stencil Equations represents one line of the matrix Discretisation Stencil elements placed according to the geometrical Accuracy position stencils for the Poisson equation:   1 � � 1 D : 2 D : 1 − 2 1 1 − 4 1   1

  10. Scientific Accuracy Computing I Michael Bader Grid Generation Discretisation for 5-point Poisson stencil; System of Linear order of accuracy: � u h − u � = O ( h 2 ) = O ( N − 2 ) Equations curse of dimension: Discretisation Stencil for that, we need O ( N d ) points Accuracy Possibilities of an improvement: use higher-order discretisation via higher order terms of Taylor series leads to larger stencils (involving more neighbouring grid points) use locally refined ( adaptive ) grids

  11. Scientific Computing I Michael Bader FEM Main Ingredients Weak Forms and Weak Solutions Part II Ansatz Functions Weak Solutions Test and Ansatz Finite Element Methods Space Discretisation A Road to Theory Choosing Basis Functions Nodal Basis Element Stiffness Matrices Example: 1D Poisson Example: 2D Poisson Workflow

  12. Scientific Finite Elements – Main Ingredients Computing I Michael Bader compute a function as numerical solution; 1 FEM Main Ingredients search in a function space V h : Weak Forms and Weak Solutions u h = ∑ u j ϕ j ( x ) , span { ϕ 1 ,... ϕ J } = W h Ansatz Functions Weak Solutions j Test and Ansatz Space solve weak form of PDE to reduce regularity 2 Discretisation properties A Road to Theory � � Choosing Basis u ′′ = f v ′ u ′ dx = − → vf dx Functions Nodal Basis Element Stiffness Matrices choose basis function with a local support , 3 Example: 1D Poisson e.g.: Example: 2D Poisson Workflow ϕ j ( x i ) = δ ij

  13. Scientific Choose Test and Ansatz Space Computing I Michael Bader FEM Main Ingredients search for solution functions u h of the form Weak Forms and Weak Solutions u h = ∑ u j ϕ j ( x ) Ansatz Functions Weak Solutions j Test and Ansatz Space the basis (ansatz) functions ϕ j ( x ) build a vector Discretisation space (or function space) W h A Road to Theory Choosing Basis span { ϕ 1 ,... ϕ J } = V h Functions Nodal Basis Element Stiffness the “best” solution u h in this function space is Matrices Example: 1D Poisson wanted Example: 2D Poisson Workflow

  14. Scientific Example: Nodal Basis Computing I Michael Bader  1 h ( x − x i − 1 ) x i − 1 < x < x i FEM Main  Ingredients  1 ϕ i ( x ) := h ( x i + 1 − x ) x i < x < x i + 1 Weak Forms and Weak Solutions   0 otherwise Ansatz Functions Weak Solutions Test and Ansatz Space 1 Discretisation 0,8 A Road to Theory Choosing Basis 0,6 Functions Nodal Basis 0,4 Element Stiffness Matrices 0,2 Example: 1D Poisson Example: 2D Poisson Workflow 0 0 0,2 0,4 0,6 0,8 1 x

  15. Scientific Weak Forms and Weak Solutions Computing I Michael Bader FEM Main Ingredients consider a PDE Lu = f (e.g. Lu = ∆ u ) Weak Forms and Weak Solutions transformation to the weak form : Ansatz Functions � � Weak Solutions � Lu , v � = vLu dx = vf dx = � f , v � ∀ v ∈ V Test and Ansatz Space Discretisation V a certain class of functions A Road to Theory “real solution” u also solves the weak form Choosing Basis Functions � Lu , v � a bilinear form ; often written as: Nodal Basis Element Stiffness Matrices a ( Lu , v ) = � f , v � ∀ v ∈ V Example: 1D Poisson Example: 2D Poisson Workflow

  16. Scientific Weak Form of the Poisson Equation Computing I Michael Bader Poisson equation with Dirichlet conditions: FEM Main Ingredients − ∆ u = f in Ω , u = 0 on δ Ω Weak Forms and Weak Solutions weak form: Ansatz Functions Weak Solutions � � − Ω v ∆ u d Ω = Ω vf d Ω ∀ v Test and Ansatz Space Discretisation apply Green’s formula (and boundary A Road to Theory conditions): Choosing Basis Functions � � Nodal Basis Ω ∇ v · ∇ u d Ω = Ω vf d Ω ∀ v Element Stiffness Matrices Example: 1D Poisson weaker requirements for a solution u : Example: 2D Poisson Workflow twice differentiabale → first derivative integrable

  17. Scientific Choose Test and Ansatz Space Computing I Michael Bader search for weak solutions u h in a certain FEM Main function space W h Ingredients Weak Forms and � � � � Weak Solutions ∑ vL u j ϕ j ( x ) dx = vf dx ∀ v ∈ V Ansatz Functions j Weak Solutions Test and Ansatz where span { ϕ j } = W h (“ansatz space”) Space choose a basis { ψ i } of the test space V ; Discretisation then: A Road to Theory Choosing Basis � � � � Functions ∑ ψ i L u j ϕ j ( x ) dx = ψ i f dx ∀ ψ i Nodal Basis Element Stiffness j Matrices Example: 1D Poisson leads to system of equations for unknowns u j Example: 2D Poisson Workflow V is often chosen to be identical to W h (Ritz-Galerkin method)

  18. Scientific Discretisation – Finite Elements Computing I Michael Bader FEM Main L linear ⇒ system of linear equations Ingredients Weak Forms and � � � � Weak Solutions ∑ ψ i L ϕ j ( x ) dx u j = ψ i f dx ∀ ψ i Ansatz Functions j Weak Solutions � �� � =: A ij Test and Ansatz Space aim: make matrix A sparse → most A ij = 0 Discretisation A Road to Theory approach: local basis functions on a Choosing Basis discretisation grid Functions Nodal Basis ψ j , ϕ j zero everywhere except in grid cells Element Stiffness Matrices adjacent to grid point x j Example: 1D Poisson Example: 2D Poisson A ij = 0, if ψ i and ϕ j don’t overlap Workflow

  19. Scientific A Road to Theory Computing I Michael Bader FEM Main Ingredients weak formulation is equivalent to variational Weak Forms and approach: Weak Solutions solution u minimises an energy functional Ansatz Functions Weak Solutions best approximation property: Test and Ansatz Space � � � u − u FE � � Discretisation a ≤ inf u h ∈ V � u − u h � a � h A Road to Theory Choosing Basis in terms of the norm induced by the bilinear Functions Nodal Basis form a (energy norm) Element Stiffness thus: error bounded by interpoplation error Matrices Example: 1D Poisson (in energy norm) Example: 2D Poisson Workflow

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend