contents
play

Contents Part A: Background on Radar, Array Processing, SAR and - PowerPoint PPT Presentation

M ethodologies dEstimation et de D etection Robuste en Conditions Non-Standards Pour le Traitement dAntenne, lImagerie et le Radar Jean-Philippe Ovarlez 1 , 2 1 SONDRA, CentraleSup elec, France 2 French Aerospace Lab, ONERA


  1. M´ ethodologies d’Estimation et de D´ etection Robuste en Conditions Non-Standards Pour le Traitement d’Antenne, l’Imagerie et le Radar Jean-Philippe Ovarlez 1 , 2 1 SONDRA, CentraleSup´ elec, France 2 French Aerospace Lab, ONERA DEMR/TSI, France Joint works with F. Pascal, P. Forster, G. Ginolhac, M. Mahot, J. Frontera-Pons, A. Breloy, G. Vasile, and many others eme ´ Ecole d’´ 12 ` Et´ e de Peyresq en Traitement du Signal et des Images 25 juin au 01 juillet 2017 Jean-Philippe Ovarlez Sch´ emas de D´ etection Adaptative Robuste

  2. Adaptive Robust Detection Schemes ... Other Refinements Contents Part A: Background on Radar, Array Processing, SAR and Hyperspectral Imaging Part B: Robust Detection and Estimation Schemes Part C: Applications and Results in Radar, STAP and Array Processing, SAR Imaging, Hyperspectral Imaging 1/68 Jean-Philippe Ovarlez Sch´ emas de D´ etection Adaptative Robuste

  3. Adaptive Robust Detection Schemes ... Other Refinements Part B Robust Detection and Estimation Schemes 2/68 Jean-Philippe Ovarlez Sch´ emas de D´ etection Adaptative Robuste

  4. Adaptive Robust Detection Schemes ... Other Refinements Part B: Contents 1 Adaptive Robust Detection Schemes in non-Gaussian Background CES distributions M -estimators and Tyler (FP) Estimator Robustness of M-estimators and ANMF MUltiple Signal Classification (MUSIC) method 2 Other Refinements Exploiting Prior Information: Covariance Structure Low Rank Detectors Shrinkage of M -estimator RMT Theory and M -Estimator based Detectors 3/68 Jean-Philippe Ovarlez Sch´ emas de D´ etection Adaptative Robuste

  5. CES distributions Adaptive Robust Detection Schemes ... M -estimators and Tyler (FP) Estimator Other Refinements Robustness of M-estimators and ANMF MUltiple Signal Classification (MUSIC) method Outline 1 Adaptive Robust Detection Schemes in non-Gaussian Background CES distributions M -estimators and Tyler (FP) Estimator Robustness of M-estimators and ANMF MUltiple Signal Classification (MUSIC) method 2 Other Refinements Exploiting Prior Information: Covariance Structure Low Rank Detectors Shrinkage of M -estimator RMT Theory and M -Estimator based Detectors 4/68 Jean-Philippe Ovarlez Sch´ emas de D´ etection Adaptative Robuste

  6. CES distributions Adaptive Robust Detection Schemes ... M -estimators and Tyler (FP) Estimator Other Refinements Robustness of M-estimators and ANMF MUltiple Signal Classification (MUSIC) method Modeling the background Let z be a complex circular random vector of length m . z has a Complex Elliptically Symmetric (CES) distribution ( CE ( µ , Σ, g . ) ) if its PDF is [Kelker, 1970, Frahm, 2004, Ollila et al., 2012]: g z ( z ) = π − m | Σ | − 1 h z (( z − µ ) H Σ − 1 ( z − µ )) , (1) where h z : [ 0 , ∞ ) → [ 0 , ∞ ) is the density generator, where µ is the statistical mean (generally � z z H � known or = 0 ) and Σ is the scatter matrix. In general, E = α Σ where α is known. Large class of distributions : Gaussian ( h z ( z ) = exp (− z ) , SIRV, MGGD ( h z ( z ) = exp (− z α ) ), etc. Closed under affine transformations (e.g. matched filter), z = d µ + R Au ( k ) , Stochastic representation theorem : where R ≥ 0, independent of u ( k ) and Σ = AA H is a factorization of Σ , where A ∈ C m × k with k = rank ( Σ ) . 5/68 Jean-Philippe Ovarlez Sch´ emas de D´ etection Adaptative Robuste

  7. CES distributions Adaptive Robust Detection Schemes ... M -estimators and Tyler (FP) Estimator Other Refinements Robustness of M-estimators and ANMF MUltiple Signal Classification (MUSIC) method SIRV: a CES subclass The m -vector z is a complex Spherically Invariant Random Vector [Yao, 1973, Jay, 2002] if its PDF can be put in the following form: � ( z − µ ) H Σ − 1 ( z − µ ) � � ∞ 1 1 g z ( z ) = p τ ( τ ) d τ , (2) τ m exp π m | Σ | τ 0 where p τ : [ 0 , ∞ ) → [ 0 , ∞ ) is the texture generator. Large class of distributions : Gaussian ( p τ ( τ ) = δ ( τ − 1 ) ), K-distribution ( p τ gamma), Weibull (no closed form), Student-t ( p τ inverse gamma), etc. Main Gaussian Kernel: closed under affine transformations, The texture random scalar is modeling the variation of the power of the Gaussian vector x along his support (e.g. heterogeneity of the noise along range bins, time, spatial domain, etc.), z = d µ + √ τ A x , where τ ≥ 0 is the texture, Stochastic representation theorem : independent of x and x ∼ CN ( 0 , Σ ) . 6/68 Jean-Philippe Ovarlez Sch´ emas de D´ etection Adaptative Robuste

  8. CES distributions Adaptive Robust Detection Schemes ... M -estimators and Tyler (FP) Estimator Other Refinements Robustness of M-estimators and ANMF MUltiple Signal Classification (MUSIC) method Outline 1 Adaptive Robust Detection Schemes in non-Gaussian Background CES distributions M -estimators and Tyler (FP) Estimator Robustness of M-estimators and ANMF MUltiple Signal Classification (MUSIC) method 2 Other Refinements Exploiting Prior Information: Covariance Structure Low Rank Detectors Shrinkage of M -estimator RMT Theory and M -Estimator based Detectors 7/68 Jean-Philippe Ovarlez Sch´ emas de D´ etection Adaptative Robuste

  9. CES distributions Adaptive Robust Detection Schemes ... M -estimators and Tyler (FP) Estimator Other Refinements Robustness of M-estimators and ANMF MUltiple Signal Classification (MUSIC) method Estimating the covariance matrix: Conventional estimators Assuming n available SIRV secondary data z k = √ τ k x k where x k ∼ CN ( 0 , Σ ) and where τ k scalar random variable. The Sample Covariance Matrix (SCM) may be a poor estimate of the Elliptical/SIRV Scatter/Covariance Matrix because of the texture contamination: n n n S n = 1 � k = 1 � k � = 1 � ^ z k z H τ k x k x H x k x H k , n n n k = 1 k = 1 k = 1 The Normalized Sample Covariance Matrix (NSCM) may be a good candidate of the Elliptical SIRV Scatter/Covariance Matrix: n z k z H n x k x H � � Σ NSCM = 1 = 1 k k ^ , z H x H n k z k n k x k k = 1 k = 1 This estimate does not depend on the texture τ k but it is biased and share the same eigenvectors but have different eigenvalues, with the same ordering [Bausson et al., 2007]. 8/68 Jean-Philippe Ovarlez Sch´ emas de D´ etection Adaptative Robuste

  10. CES distributions Adaptive Robust Detection Schemes ... M -estimators and Tyler (FP) Estimator Other Refinements Robustness of M-estimators and ANMF MUltiple Signal Classification (MUSIC) method Estimating the covariance matrix Let ( z 1 , ..., z n ) be a n -sample ∼ CE m ( 0 , Σ, g z ( . ) ) (Secondary data). PDF g z ( . ) specified: ML -estimator of Σ � � i � Σ − 1 z i z H n − g ′ � Σ = 1 z � � z i z H � i , n i � Σ − 1 z i z H g z i = 1 PDF g z ( . ) not specified: M -estimator of Σ n � � � Σ = 1 Σ − 1 z i � i � z H z i z H u i , n i = 1 [Maronna et al., 2006, Kent and Tyler, 1991, Pascal, 2006, Pascal et al., 2008a, Pascal et al., 2008b] Existence, Uniqueness, Convergence of the recursive algorithm, etc. 9/68 Jean-Philippe Ovarlez Sch´ emas de D´ etection Adaptative Robuste

  11. CES distributions Adaptive Robust Detection Schemes ... M -estimators and Tyler (FP) Estimator Other Refinements Robustness of M-estimators and ANMF MUltiple Signal Classification (MUSIC) method Examples of M -estimators FPE (Tyler): SCM: Huber’s M -estimator: � K / e if r < = e u ( r ) = 1 u ( r ) = m u ( r ) = r K / r if r > e Huber = mix between SCM and FPE [Huber, 1964], FPE and SCM are “not” (theoretically) M -estimators, FPE is the most robust while SCM is the most efficient. 10/68 Jean-Philippe Ovarlez Sch´ emas de D´ etection Adaptative Robuste

  12. CES distributions Adaptive Robust Detection Schemes ... M -estimators and Tyler (FP) Estimator Other Refinements Robustness of M-estimators and ANMF MUltiple Signal Classification (MUSIC) method Estimating the covariance matrix: Tyler’s M -estimators Let ( z 1 , ..., z n ) be a n -sample ∼ CE m ( 0 , Σ, g z ) (Secondary data). FP Estimate ([Tyler, 1987, Pascal et al., 2008a] n � z k z H Σ FPE = m � k . k � Σ − 1 n z H FPE z k k = 1 The FPE does not depend on the texture (SIRV or CES distributions), Existence, Uniqueness, Convergence of the recursive algorithm (identifiability condition: tr ( � Σ FPE ) = m ), True MLE under SIRV distributed noise with unknown deterministic texture { τ k } k ∈ [ 1 , n ] . 11/68 Jean-Philippe Ovarlez Sch´ emas de D´ etection Adaptative Robuste

  13. CES distributions Adaptive Robust Detection Schemes ... M -estimators and Tyler (FP) Estimator Other Refinements Robustness of M-estimators and ANMF MUltiple Signal Classification (MUSIC) method Some Weighting Functions of M -estimators Weighting functions for student -t distribution Weighting functions for K -distribution 10 1 10 1 n = 0.01 n = 0.1 n = 0.01 n = 0.5 n = 0.1 n = 0.5 n = 1 n = 1 n = 10 n = 10 10 0 m/t m/t 10 0 j ( t ) j ( t ) 10 –1 10 –1 10 –2 10 –2 0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 t t √ ν K ν − m − 1 ( 4 ν t ) u ( t ) = ν + 2 m u ( t ) = K ν − m ( 4 ν t ) , ν + 2 t . t Σ = ^ ^ Σ = ^ ^ We have lim Σ FPE and lim Σ SCM . ν →∞ ν → 0 12/68 Jean-Philippe Ovarlez Sch´ emas de D´ etection Adaptative Robuste

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend