analysis of error factors for measurement data and
play

Analysis of Error Factors for Measurement Data and Inverse - PowerPoint PPT Presentation

Tutorial 8 Analysis of Error Factors for Measurement Data and Inverse Techniques Application to Temperature Measurements and Heat Flux Estimations Damien DAVID Centre de Thermique de Lyon INSA de Lyon - CNRS - UCBL 14th June 2011 1 Method


  1. Content of the section Method 0 : Foreword, Definitions M0 : Foreword 1 M1 : Estimator Uncertainty No Error Factor Method 1 : Determination of an Estimator Uncertainty 2 Analysis Error Factor Analysis No Error Factor Analysis Extra Calc Error Factor Analysis M2 : Monte Carlo Method Extra Calculation A0 : Presentation Study Case A1 : Temperature Method 2 : The Monte Carlo Method 3 Uncertainties A2 : IT Uncertainties Application 0 : Presentation of Study Case 4 Application 1 : Temperature Estimation Uncertainties 5 Application 2 : Inverse Technique Uncertainties 6 10

  2. No Error Factor Analysis M0 : Foreword M1 : Estimator Uncertainty No Error Factor Analysis Error Factor Analysis Extra Calc Raw Data Raw Data Total Raw Data Total Estimation Total M2 : Monte Carlo Errors Error RV Error RV Method A0 : Presentation Study Case A1 : Temperature Uncertainties A2 : IT Uncertainties 11

  3. No Error Factor Analysis M0 : Foreword M1 : Estimator Uncertainty No Error Factor Analysis Error Factor Analysis Extra Calc Raw Data Raw Data Total Raw Data Total Estimation Total M2 : Monte Carlo Errors Error RV Error RV Method A0 : Presentation Study Case A1 : Temperature Uncertainties Population of raw data A2 : IT Uncertainties Measurement of the same true value Y true Y true not necessarily known. p = Y true + ε Y p Y 11

  4. No Error Factor Analysis M0 : Foreword M1 : Estimator Uncertainty No Error Factor Analysis Error Factor Analysis Extra Calc Raw Data Raw Data Total Raw Data Total Estimation Total M2 : Monte Carlo Errors Error RV Error RV Method A0 : Presentation Study Case A1 : Temperature Uncertainties Step 0 : Approximation of the raw data errors A2 : IT Uncertainties Approximation of ε p Y p − Y = ε δ p Y = Y p Y − ε p Y 11

  5. No Error Factor Analysis M0 : Foreword M1 : Estimator Uncertainty No Error Factor Analysis Error Factor Analysis Extra Calc Raw Data Raw Data Total Raw Data Total Estimation Total M2 : Monte Carlo Errors Error RV Error RV Method A0 : Presentation Study Case A1 : Temperature Uncertainties Step 1 : Determination of ∆ Y A2 : IT Uncertainties N Y = N Y 15 ν Y = N Y − 1 10 � N Y p ( δ ) p = 1 ( δ p Y ) 2 s Y = 2 5 ν Y 0 −0.1 −0.05 0 0.05 0.1 δ 11

  6. No Error Factor Analysis M0 : Foreword M1 : Estimator Uncertainty No Error Factor Analysis Error Factor Analysis Extra Calc Raw Data Raw Data Total Raw Data Total Estimation Total M2 : Monte Carlo Errors Error RV Error RV Method A0 : Presentation Study Case A1 : Temperature Uncertainties Step 3 : Determination of ∆ Y m A2 : IT Uncertainties N Y m = N Y ε 1 + .. + ε N m ν Y m = ν Y N m Y m = s 2 s 2 Y Decreasing N m 11

  7. No Error Factor Analysis M0 : Foreword M1 : Estimator Uncertainty No Error Factor Analysis Advantages Error Factor Analysis Extra Calc Quick Method M2 : Monte Carlo Method Fluctuation of the Estimation Value A0 : Presentation Study Case A1 : Temperature Drawbacks Uncertainties A2 : IT No Bias Uncertainties No Interpretation of the Error Structure 12

  8. Error Factor Analysis M0 : Foreword M1 : Estimator Uncertainty No Error Factor Estimation Total Analysis Error RV Error Factor Analysis Extra Calc M2 : Monte Carlo Method Raw Associated Raw Associated Raw Associated Estimation Associated A0 : Presentation Data Populations Error populations Error RV Error RV Study Case A1 : Temperature Uncertainties A2 : IT Uncertainties 13

  9. Error Factor Analysis M0 : Foreword M1 : Estimator Uncertainty No Error Factor Estimation Total Analysis Error RV Error Factor Analysis Extra Calc M2 : Monte Carlo Method Raw Associated Raw Associated Raw Associated Estimation Associated A0 : Presentation Data Populations Error populations Error RV Error RV Study Case A1 : Temperature Uncertainties Population of raw data A2 : IT Uncertainties f k are blocked by controlling environment 1 1 Y f M = Y true + ε Y , f 1 + . . . + ε Y , f q − 1 + ε Y , f q + ε Y , f q + 1 + . . . + ε Y , f M Y f M = Y true + ε Y , f 1 + . . . + ε Y , f q − 1 + ε Y , f q + ε Y , f q + 1 + . . . + ε 2 2 Y , f M ................... N fM N fM Y f q = Y true + ε Y , f 1 + . . . + ε Y , f q − 1 + ε Y , f q + ε Y , f q + 1 + . . . + ε Y , f M 13

  10. Error Factor Analysis M0 : Foreword M1 : Estimator Uncertainty No Error Factor Estimation Total Analysis Error RV Error Factor Analysis Extra Calc M2 : Monte Carlo Method Raw Associated Raw Associated Raw Associated Estimation Associated A0 : Presentation Data Populations Error populations Error RV Error RV Study Case A1 : Temperature Uncertainties Population of raw data A2 : IT Uncertainties f k are blocked by controlling environment 1 1 Y f M = Y true + ε Y , f 1 + . . . + ε Y , f q − 1 + ε Y , f q + ε Y , f q + 1 + . . . + ε Y , f M Y f M = Y true + ε Y , f 1 + . . . + ε Y , f q − 1 + ε Y , f q + ε Y , f q + 1 + . . . + ε 2 2 Y , f M ................... N fM N fM Y f q = Y true + ε Y , f 1 + . . . + ε Y , f q − 1 + ε Y , f q + ε Y , f q + 1 + . . . + ε Y , f M Y f M = Y true + ε Y , f 1 + . . . + ε Y , f q − 1 + ε Y , f q + ε Y , f q + 1 + . . . + ε Y , f M 13

  11. Error Factor Analysis M0 : Foreword M1 : Estimator Uncertainty No Error Factor Estimation Total Analysis Error RV Error Factor Analysis Extra Calc M2 : Monte Carlo Method Raw Associated Raw Associated Raw Associated Estimation Associated A0 : Presentation Data Populations Error populations Error RV Error RV Study Case A1 : Temperature Uncertainties Step 0 : Approximation of the raw associated errors A2 : IT Uncertainties Approximation of ε p Y , f M p f M − Y f M = ε p p Y , f M − ε Y , f M δ Y , f M = Y 13

  12. Error Factor Analysis M0 : Foreword M1 : Estimator Uncertainty No Error Factor Estimation Total Analysis Error RV Error Factor Analysis Extra Calc M2 : Monte Carlo Method Associated Raw Raw Associated Raw Associated Estimation Associated A0 : Presentation Data Populations Error populations Error RV Error RV Study Case A1 : Temperature Uncertainties Step 1 : Determination of ∆ Y , f M A2 : IT Uncertainties N Y , f M = N f M 15 ν Y , f M = N f M − 1 10 � N fM p ( δ ) p = 1 ( δ p Y , f M ) 2 s 2 Y , f M = 5 ν Y , f M 0 −0.1 −0.05 0 0.05 0.1 δ 13

  13. Error Factor Analysis M0 : Foreword M1 : Estimator Uncertainty No Error Factor Estimation Total Analysis Error RV Error Factor Analysis Extra Calc M2 : Monte Carlo Method Raw Associated Raw Associated Raw Associated Estimation Associated A0 : Presentation Data Populations Error populations Error RV Error RV Study Case A1 : Temperature Uncertainties Step 2 : Determination of ∆ Y , f M A2 : IT Uncertainties N Y , f M = N Y , f M ε 1 + .. + ε N m ν Y , f M = ν Y , f M N m Y , f M = s 2 Y , f M s 2 Decreasing N m 13

  14. Error Factor Analysis M0 : Foreword M1 : Estimator Uncertainty No Error Factor Estimation Total Analysis Error RV Error Factor Analysis Extra Calc M2 : Monte Carlo Method Raw Associated Raw Associated Raw Associated Estimation Associated A0 : Presentation Data Populations Error populations Error RV Error RV Study Case A1 : Temperature Uncertainties Population of raw data A2 : IT Uncertainties f M blocked by averaging 1 1 1 Y f q = Y true + ε Y , f 1 + . . . + ε Y , f q − 1 + ε Y , f q + ε Y , f q + 1 + . . . + ε Y , f M Y f q = Y true + ε Y , f 1 + . . . + ε Y , f q − 1 + ε 2 Y , f q + ε Y , f q + 1 + . . . + ε 2 2 Y , f M ................... N fq N fq N fq Y f q = Y true + ε Y , f 1 + . . . + ε Y , f q − 1 + ε Y , f q + ε Y , f q + 1 + . . . + ε Y , f M 13

  15. Error Factor Analysis M0 : Foreword M1 : Estimator Uncertainty No Error Factor Estimation Total Analysis Error RV Error Factor Analysis Extra Calc M2 : Monte Carlo Method Raw Associated Raw Associated Raw Associated Estimation Associated A0 : Presentation Data Populations Error populations Error RV Error RV Study Case A1 : Temperature Uncertainties Population of raw data A2 : IT Uncertainties f M blocked by averaging 1 1 1 Y f q = Y true + ε Y , f 1 + . . . + ε Y , f q − 1 + ε Y , f q + ε Y , f q + 1 + . . . + ε Y , f M Y f q = Y true + ε Y , f 1 + . . . + ε Y , f q − 1 + ε 2 2 Y , f q + ε Y , f q + 1 + . . . + ε 2 Y , f M ................... N fq N fq N fq Y f q = Y true + ε Y , f 1 + . . . + ε Y , f q − 1 + ε Y , f q + ε Y , f q + . . . + ε Y , f M Y f q = Y true + ε Y , f 1 + . . . + ε Y , f q − 1 + ε Y , f q + ε Y , f q + 1 + . . . + ε Y , f M 13

  16. Error Factor Analysis M0 : Foreword M1 : Estimator Uncertainty No Error Factor Estimation Total Analysis Error RV Error Factor Analysis Extra Calc M2 : Monte Carlo Method Raw Associated Raw Associated Raw Associated Estimation Associated A0 : Presentation Data Populations Error populations Error RV Error RV Study Case A1 : Temperature Uncertainties Step 0 : Approximation of the raw associated errors A2 : IT Uncertainties Approximation of ε p Y , f q δ p Y , f q = Y f q − Y f q = ( ε p Y , f q − ε Y , f q ) + ( ε p Y , f M − ε Y , f M ) p 13

  17. Error Factor Analysis M0 : Foreword M1 : Estimator Uncertainty No Error Factor Estimation Total Analysis Error RV Error Factor Analysis Extra Calc M2 : Monte Carlo Method Raw Associated Raw Associated Raw Associated Estimation Associated A0 : Presentation Data Populations Error populations Error RV Error RV Study Case A1 : Temperature Uncertainties Step 1 : Determination of ∆ Y , f q A2 : IT Uncertainties N Y , f q = N f q 20 ν Y , f q = N f q − 1 15 � N fq p ( δ ) 10 p p = 1 ( δ Y , f q ) 2 − s 2 Y , f M 2 s Y , f q = ν Y , f q N f q 5 Compensation 0 −0.1 −0.05 0 0.05 0.1 δ 13

  18. Error Factor Analysis M0 : Foreword M1 : Estimator Uncertainty No Error Factor Estimation Total Analysis Error RV Error Factor Analysis Extra Calc M2 : Monte Carlo Method Raw Associated Raw Associated Raw Associated Estimation Associated A0 : Presentation Data Populations Error populations Error RV Error RV Study Case A1 : Temperature Uncertainties Step 2 : Determination of ∆ Y , f q A2 : IT Uncertainties N Y , f q = N Y , f q ε 1 + .. + ε N m ν Y , f q = ν Y , f q N m s 2 Y , f q s 2 Y , f q = Fluctuating Error N m 2 2 s Y , f q = s Y , f q Bias 13

  19. Error Factor Analysis M0 : Foreword M1 : Estimator Uncertainty No Error Factor Estimation Total Analysis Error RV Error Factor Analysis Extra Calc M2 : Monte Carlo Method Raw Associated Raw Associated Raw Associated Estimation Associated A0 : Presentation Data Populations Error populations Error RV Error RV Study Case A1 : Temperature Uncertainties Step 4 : Determination of ∆ Y m A2 : IT Uncertainties N Y m = � q N Y , f q � � �     � 2 s 2 � � ε f 1 + .. + ε f M � Nf Y , fq    � q = 1 � NY , fq ν Y m = � �     s 2 2 � � � Nf  Y , fq  �   1 �   q = 1 NY , fq ν Y , fq Y m = � s 2 q s 2 Y , f q Sum Variances 13

  20. Error Factor Analysis M0 : Foreword M1 : Estimator Uncertainty No Error Factor Analysis Error Factor Analysis Advantages Extra Calc M2 : Monte Carlo Description of the Error Structure Method A0 : Presentation Bias Taken Into Account Study Case A1 : Temperature Uncertainties Drawbacks A2 : IT Uncertainties Choice of the Predominant Error Factors 14

  21. Extra Calculation M0 : Foreword M1 : Estimator Uncertainty No Error Factor Intrinsic Average Analysis Error Factor Analysis Extra Calc M2 : Monte Carlo Method A0 : Presentation Raw Associated Study Case Error RVs A1 : Temperature Uncertainties Step 5 : Intrinsic average A2 : IT Uncertainties N Y , f k = � i N Y , f k , i ∆ ν Y , f k = � i ν Y , f k , i � i ν Y , f k , i × s 2 Same Error Factor Y , f k , i 2 � ν Y , f k , i s Y , f k = Different Y true 15

  22. Content of the section Method 0 : Foreword, Definitions M0 : Foreword 1 M1 : Estimator Uncertainty Method 1 : Determination of an Estimator Uncertainty M2 : Monte Carlo 2 Method The MC method Generation Inputs Method 2 : The Monte Carlo Method 3 Error Factor Analysis A0 : Presentation The Monte Carlo method Study Case Generation of Noised Input Populations A1 : Temperature Uncertainties Error Factor Analysis A2 : IT Uncertainties Application 0 : Presentation of Study Case 4 Application 1 : Temperature Estimation Uncertainties 5 Application 2 : Inverse Technique Uncertainties 6 16

  23. The Monte Carlo Method M0 : Foreword M1 : Estimator Uncertainty Inverse Technique M2 : Monte Carlo Method The MC method Generation Inputs Error Factor Analysis A0 : Presentation Study Case Inputs Outputs A1 : Temperature Uncertainties Inverse Technique A2 : IT Uncertainties N I Estimation Inputs N O Outputs 17

  24. The Monte Carlo Method M0 : Foreword M1 : Estimator Uncertainty Inverse Technique M2 : Monte Carlo Method The MC method Generation Inputs Error Factor Analysis A0 : Presentation Study Case Populations Inputs Populations Outputs A1 : Temperature Uncertainties The Monte Carlo Method A2 : IT Uncertainties Noised population for the inputs Noised outputs 17

  25. Generation of Noised Input Populations M0 : Foreword M1 : Estimator Uncertainty M2 : Monte Carlo Method The MC method Estimation Total Estimation Total Noised Input Generation Inputs Error RV Error Values Error Factor Analysis A0 : Presentation Study Case A1 : Temperature Uncertainties Generation from ∆ Y m A2 : IT Uncertainties 0.4 ∆ ( 0 , 1 , ν, N ) � 0.3 p = t ν Ym δ s 2 p ( t ) rand Y m 0.2 0.1 Command trnd on 0 MATLAB TM −5 0 5 t 18

  26. Generation of Noised Input Populations M0 : Foreword M1 : Estimator Uncertainty Noised Input M2 : Monte Carlo Method The MC method Generation Inputs Error Factor Analysis Estimation Associated Estimation Associated A0 : Presentation Error RV Error Values Study Case A1 : Temperature Uncertainties Generation from ∆ Y m A2 : IT Uncertainties 0.4 ∆ ( 0 , 1 , ν, N ) � 0.3 ν Y , fq δ p f q = t s 2 p ( t ) rand Y , f q 0.2 0.1 Command trnd on 0 MATLAB TM −5 0 5 t 18

  27. Generation of Noised Input Populations M0 : Foreword M1 : Estimator Uncertainty M2 : Monte Carlo Noised Input Estimation Assiociated Estimation Associated Method Error RV Error Values The MC method Generation Inputs Error Factor Analysis A0 : Presentation Autocorrelation Matrix Study Case A1 : Temperature Uncertainties Same estimator Y , different times t i A2 : IT Uncertainties Dependency between : δ ( t i ) δ ( t j ) with j < i 18

  28. Generation of Noised Input Populations M0 : Foreword M1 : Estimator Uncertainty M2 : Monte Carlo Noised Input Estimation Assiociated Estimation Associated Method Error RV Error Values The MC method Generation Inputs Error Factor Analysis A0 : Presentation Autocorrelation Matrix Study Case A1 : Temperature Uncertainties Same estimator Y , different times t i A2 : IT Uncertainties � i ) = mvtrnd ( R , ν ) ( δ s 2 2 δ f 0 −2 Fully dependent : R i , j = 1 2 δ f 0 Autocorrelated : R i , j � = 0 −2 Independent : R i , j = 0 2 δ f 0 −2 0 20 40 60 80 100 time 18

  29. Error Factor Analysis M0 : Foreword M1 : Estimator Uncertainty Inverse Technique M2 : Monte Carlo Method The MC method Generation Inputs Error Factor Analysis A0 : Presentation Study Case Populations Inputs Populations Outputs A1 : Temperature Uncertainties A2 : IT Uncertainties 19

  30. Error Factor Analysis M0 : Foreword M1 : Estimator Uncertainty Inverse Technique M2 : Monte Carlo Method The MC method Generation Inputs Error Factor Analysis A0 : Presentation Study Case Populations Inputs Populations Outputs A1 : Temperature Uncertainties A2 : IT Uncertainties 19

  31. Error Factor Analysis M0 : Foreword M1 : Estimator Uncertainty Inverse Technique M2 : Monte Carlo Method The MC method Generation Inputs Error Factor Analysis A0 : Presentation Study Case Populations Inputs Populations Outputs A1 : Temperature Uncertainties A2 : IT Uncertainties 19

  32. Content of the section M0 : Foreword Method 0 : Foreword, Definitions 1 M1 : Estimator Uncertainty M2 : Monte Carlo Method 1 : Determination of an Estimator Uncertainty Method 2 A0 : Presentation Study Case The Inverse Technique Method 2 : The Monte Carlo Method 3 A1 : Temperature Uncertainties A2 : IT Application 0 : Presentation of Study Case 4 Uncertainties The Inverse Technique Application 1 : Temperature Estimation Uncertainties 5 Application 2 : Inverse Technique Uncertainties 6 20

  33. The Inverse Technique Adiabatic Conditions M0 : Foreword M1 : Estimator Uncertainty M2 : Monte Carlo Method A0 : Presentation Study Case The Inverse Technique A1 : Temperature Uncertainties A2 : IT Uncertainties 21

  34. The Inverse Technique Adiabatic Conditions M0 : Foreword M1 : Estimator Uncertainty M2 : Monte Carlo Method A0 : Presentation Study Case The Inverse Technique A1 : Temperature Uncertainties A2 : IT Uncertainties Interpolation Model 21

  35. The Inverse Technique M0 : Foreword M1 : Estimator 40 Uncertainty M2 : Monte Carlo Method 30 T k , i A0 : Presentation ¯ Study Case 20 The Inverse Technique A1 : Temperature 10 Uncertainties 0 1.5 A2 : IT 500 Uncertainties 1 1000 0.5 1500 Y [m] 0 t [min] 21

  36. The Inverse Technique M0 : Foreword M1 : Estimator Uncertainty M2 : Monte Carlo Method A0 : Presentation Study Case The Inverse Technique A1 : Temperature Uncertainties A2 : IT Uncertainties 21

  37. The Inverse Technique M0 : Foreword M1 : Estimator Uncertainty M2 : Monte Carlo Method A0 : Presentation Study Case The Inverse Technique A1 : Temperature Uncertainties A2 : IT Uncertainties 21

  38. Content of the section Method 0 : Foreword, Definitions M0 : Foreword 1 M1 : Estimator Uncertainty Method 1 : Determination of an Estimator Uncertainty M2 : Monte Carlo 2 Method A0 : Presentation Study Case Method 2 : The Monte Carlo Method 3 A1 : Temperature Uncertainties Calibration Application 0 : Presentation of Study Case 4 Error Factors Results A2 : IT Uncertainties Application 1 : Temperature Estimation Uncertainties 5 Calibration of the Thermocouples The error factors Results Application 2 : Inverse Technique Uncertainties 6 22

  39. The Calibration of the Thermocouples Reference probe Reference probe Thermocouple Thermocouple M0 : Foreword M1 : Estimator Uncertainty Reflux Reflux M2 : Monte Carlo Method A0 : Presentation Study Case Insulated pipe Insulated pipe A1 : Temperature Uncertainties Calibration Error Factors Refrigerated/heated bath Refrigerated/heated bath Results A2 : IT Uncertainties Experimental Setup 23

  40. The Calibration of the Thermocouples M0 : Foreword M1 : Estimator Uncertainty M2 : Monte Carlo Method A0 : Presentation Study Case A1 : Temperature Uncertainties Calibration Error Factors Results A2 : IT Uncertainties Data Acquisition ∆ T : Temperature difference between the two junctions V TC : Voltage between the two junctions 23

  41. The Calibration of the Thermocouples Set k+1 M0 : Foreword M1 : Estimator Uncertainty M2 : Monte Carlo Method A0 : Presentation Study Case A1 : Temperature Set k Uncertainties Calibration Error Factors Results A2 : IT Uncertainties Raw data N T = 13 Sets of acquisition N A = 15 Acquisitions per set 23

  42. The Calibration of the Thermocouples M0 : Foreword M1 : Estimator Uncertainty M2 : Monte Carlo Method A0 : Presentation Study Case A1 : Temperature Uncertainties Calibration Error Factors Results A2 : IT Uncertainties Averaging the data 23

  43. The Calibration of the Thermocouples Calibration curve M0 : Foreword M1 : Estimator Uncertainty M2 : Monte Carlo Method A0 : Presentation Study Case A1 : Temperature Uncertainties Calibration Error Factors Results A2 : IT Uncertainties Calibration Curve obtained with [ V TC , i , ∆ T ref , i ] 2 ∆ T c = c 2 V TC + c 1 V TC + c 0 23

  44. The Calibration of the Thermocouples M0 : Foreword M1 : Estimator Uncertainty M2 : Monte Carlo Method Calibration Curve A0 : Presentation Study Case Error Noise A1 : Temperature Uncertainties Error Calibration Error Factors Results A2 : IT Uncertainties The error factors Noise Error Calibration Curve Error 23

  45. The Noise Error M0 : Foreword M1 : Estimator Uncertainty M2 : Monte Carlo Method A0 : Presentation Study Case Noise A1 : Temperature Uncertainties Error Calibration Error Factors Results A2 : IT Uncertainties Description Due to the electromagnetic noise Fast fluctuating error 24

  46. The Noise Error M0 : Foreword M1 : Estimator Uncertainty M2 : Monte Carlo Method A0 : Presentation Study Case Noise A1 : Temperature Uncertainties Error Calibration Error Factors Results A2 : IT Uncertainties Approximation of the noise error V TC , i , 1 = V true + ε i V , c + ε i i , 1 V , n i i i , 2 V TC , i , 2 = V true + ε V , c + ε V , n ................... i i i , N A V TC , i , N A = V true + ε V , c + ε V , n i i i V TC , i = V true + ε V , c + ε V , n 24

  47. The Noise Error M0 : Foreword M1 : Estimator Uncertainty M2 : Monte Carlo Method A0 : Presentation Study Case A1 : Temperature Uncertainties Calibration Error Factors Results A2 : IT Uncertainties Approximation of the noise error Turning a voltage error into a temperature error δ T , n = ∆ c ( V TC , i , 1 − V TC , i , j ) = ε p i , p T , n − ε i T , n 24

  48. The Noise Error M0 : Foreword M1 : Estimator Uncertainty M2 : Monte Carlo Method Estimation Noise Raw Noise Error RV A0 : Presentation Error RV Study Case A1 : Temperature Uncertainties Calibration Raw Noise Errors Raw Noise Error RVs Error Factors Results A2 : IT Uncertainties Calculation steps One noise error random variable per set of acquisition Step 5 : Intrinsic average Step 2’ : Fluctuating Error : the Averaging decreases the Variance 24

  49. The Calibration Curve Error M0 : Foreword M1 : Estimator Uncertainty M2 : Monte Carlo Calibration Method Curve A0 : Presentation Error Study Case A1 : Temperature Uncertainties Calibration Error Factors Results A2 : IT Uncertainties Description Discrepancy between the curve and the real behavior of the Thermocouple Bias during a set of measurement 25

  50. The Calibration Curve Error M0 : Foreword M1 : Estimator Uncertainty M2 : Monte Carlo Calibration Method Curve A0 : Presentation Error Study Case A1 : Temperature Uncertainties Calibration Error Factors Results A2 : IT Uncertainties Approximation of the calibration curve error ∆ c ( V TC , 1 ) = T true + ε 1 1 T , c + ε 1 T , n ∆ c ( V TC , 2 ) = T true + ε 2 T , c + ε 2 2 T , n ................... N T N T N T ∆ c ( V TC , NT ) = T true + ε T , c + ε T , n 25

  51. The Calibration Curve Error M0 : Foreword M1 : Estimator Uncertainty M2 : Monte Carlo Method A0 : Presentation Study Case A1 : Temperature Uncertainties Calibration Error Factors Results A2 : IT Uncertainties Approximation of the errors i We suppose T true ≈ ∆ T ref , i 3 Parameters c 1 , c 2 , c 3 to estimate the errors : p T , c = ∆ T c ( V TC , i ) − ∆ T ref , i δ 25

  52. The Calibration Curve Error M0 : Foreword M1 : Estimator Uncertainty M2 : Monte Carlo Method A0 : Presentation Study Case Raw Calibration Raw Calibration Estimation Calibration Curve Errors Curve Error RV Curve Error RV A1 : Temperature Uncertainties Calibration Error Factors Results A2 : IT Uncertainties Calculation steps Step 1’ : ν T , c = N T − 3, because of 3 parameters Step 1’ : Variance Correction Step 2’ : Bias : the Averaging does not modify the Variance 25

  53. The Calibration Curve Error Calibration Curve 'True' Response M0 : Foreword M1 : Estimator Uncertainty M2 : Monte Carlo Method A0 : Presentation Study Case A1 : Temperature Uncertainties Calibration Error Factors Results A2 : IT Uncertainties Autocorrelation 25

  54. The Calibration Curve Error M0 : Foreword M1 : Estimator Uncertainty M2 : Monte Carlo Method A0 : Presentation Study Case A1 : Temperature Uncertainties Calibration Error Factors Results A2 : IT Uncertainties Autocorrelation τ T , k = k × 5 ◦ C Temperature delay Autocorrelation : � N A i = 1 δ i T , c δ i − k T , c G T , c ( τ T , k ) = � N A i = 1 ( δ i T , c ) 2 25

  55. The Calibration Curve Error 1 M0 : Foreword M1 : Estimator 0.5 Uncertainty G ( τ T ) M2 : Monte Carlo Method 0 A0 : Presentation Study Case A1 : Temperature Uncertainties −0.5 Calibration −40 −20 0 20 40 Error Factors τ T [ o C ] Results A2 : IT Uncertainties Autocorrelation 25

  56. Temperature Estimation Uncertainties 0.04 � s 2 M0 : Foreword T , n 0.035 Standard Deviation [°C] � M1 : Estimator s 2 T , n / N m 0.03 Uncertainty � 0.025 M2 : Monte Carlo s 2 T , c Method 0.02 A0 : Presentation 0.015 Study Case A1 : Temperature 0.01 Uncertainties 0.005 Calibration Error Factors 0 Results 1 3 5 7 9 11 13 N o Thermocouple A2 : IT Uncertainties Standard Deviations N m = 90 26

  57. Temperature Estimation Uncertainties 0.065 M0 : Foreword 0.06 M1 : Estimator Uncertainty 0.055 [ o C ] M2 : Monte Carlo Method 0.05 ∆ 95 % A0 : Presentation T ¯ Study Case 0.045 A1 : Temperature Uncertainties 0.04 Calibration Error Factors Results 1 3 5 7 9 11 13 N o Thermocouple A2 : IT Uncertainties Uncertainties T = T SF + ∆ T c ( V TC ) Error on cold junction neglected Average : ∆ 95 % T m = 0 . 05 ◦ C 26

  58. Content of the section Method 0 : Foreword, Definitions M0 : Foreword 1 M1 : Estimator Uncertainty Method 1 : Determination of an Estimator Uncertainty M2 : Monte Carlo 2 Method A0 : Presentation Study Case Method 2 : The Monte Carlo Method 3 A1 : Temperature Uncertainties A2 : IT Application 0 : Presentation of Study Case 4 Uncertainties NIP Generation Temperature Uncertainty Application 1 : Temperature Estimation Uncertainties 5 Heat Flux Uncertainty Application 2 : Inverse Technique Uncertainties 6 Generation of the Noised Input Populations Temperature Uncertainty Heat Flux Uncertainty 27

  59. Generation of the Noised Input Populations M0 : Foreword M1 : Estimator Uncertainty M2 : Monte Carlo Method Inverse Technique A0 : Presentation Study Case A1 : Temperature Uncertainties A2 : IT Uncertainties NIP Generation Temperature Uncertainty Heat Flux Uncertainty 28

  60. Generation of the Noised Input Populations M0 : Foreword M1 : Estimator Uncertainty M2 : Monte Carlo Method A0 : Presentation Study Case A1 : Temperature Uncertainties A2 : IT Uncertainties NIP Generation Temperature Uncertainty Heat Flux Uncertainty Noised Temperature T k , i = T k ( t i ) 28

  61. Generation of the Noised Input Populations M0 : Foreword M1 : Estimator Uncertainty M2 : Monte Carlo Method A0 : Presentation Study Case A1 : Temperature Uncertainties A2 : IT Uncertainties NIP Generation Temperature Uncertainty Heat Flux Uncertainty Noise Errors Independent Errors 28

  62. Generation of the Noised Input Populations M0 : Foreword M1 : Estimator Uncertainty M2 : Monte Carlo Method A0 : Presentation Study Case A1 : Temperature Uncertainties A2 : IT Uncertainties NIP Generation Temperature Uncertainty Heat Flux Uncertainty Calibration Curve Errors Autocorrelated Errors R i , j = G T ( T ( t i ) − T ( t j )) 28

  63. Temperature Uncertainty IM Mean Temperature IM Temperature Uncertainty M0 : Foreword M1 : Estimator 40 0.08 Uncertainty M2 : Monte Carlo [ o C ] 30 0.06 T [ o C ] Method ∆ 95 % A0 : Presentation 20 0.04 � � T Study Case 10 0.02 A1 : Temperature 0 0 Uncertainties 1.5 1.5 500 500 1 1 A2 : IT 1000 1000 0.5 0.5 Uncertainties 1500 Y [m] 1500 Y [m] t [min] t [min] NIP Generation Temperature Uncertainty Heat Flux Uncertainty Temperature Uncertainty 95 % ∆ constant with time � T 29

  64. Temperature Uncertainty 0.08 M0 : Foreword M1 : Estimator 0.07 Uncertainty M2 : Monte Carlo [ o C ] 0.06 Method ∆ 95 % A0 : Presentation � T 0.05 Study Case A1 : Temperature 0.04 Uncertainties A2 : IT 0.03 Uncertainties 0 0.5 1 1.5 Y [m] NIP Generation Temperature Uncertainty Heat Flux Uncertainty Time-Averaged Temperature Uncertainty Local Maximums at Thermocouple locations 29

  65. Heat Flux Uncertainty Uncertainty IM Mean Heat Flux M0 : Foreword M1 : Estimator 0.2 8 Uncertainty ) [ W / m 2 ] 6 M2 : Monte Carlo 0.15 φ [ W / m 2 ] Method 4 0.1 A0 : Presentation 2 Study Case ( ∆ 95 % � � φ 0.05 0 A1 : Temperature Uncertainties 1.5 1.5 −2 0 1 0 1 0 A2 : IT 500 0.5 500 0.5 1000 1000 Uncertainties Y [m] 1500 Y [m] 1500 t [min] t [min] NIP Generation Temperature Uncertainty Heat Flux Uncertainty Heat Flux Uncertainty proportional to � 95 % ∆ φ � φ 30

  66. Heat Flux Uncertainty Relative Uncertainty 0.1 M0 : Foreword M1 : Estimator 0.09 0.2 Uncertainty M2 : Monte Carlo 0.15 / � φ / � φ 0.08 Method ∆ 95 % 0.1 ∆ 95 % � φ � φ A0 : Presentation 0.07 0.05 Study Case 0 A1 : Temperature 400 0.06 Uncertainties 1.5 600 1 A2 : IT 800 0.5 0.05 Uncertainties 0 0.5 1 1.5 1000 Y [m] t [min] Y [m] NIP Generation Temperature Uncertainty Heat Flux Uncertainty Relative Heat Flux Uncertainty φ / � 95 % ∆ φ almost constant with time � 30

  67. Heat Flux Uncertainty : Error Factors Interpretation M0 : Foreword M1 : Estimator Uncertainty T i − T i − 1 M2 : Monte Carlo φ ≈ e ρ c p Method ∆ t A0 : Presentation Study Case A1 : Temperature Uncertainties A2 : IT Uncertainties NIP Generation Temperature Uncertainty Heat Flux Uncertainty 31

  68. Heat Flux Uncertainty : Error Factors Interpretation M0 : Foreword M1 : Estimator Uncertainty T i − T i − 1 M2 : Monte Carlo φ ≈ e ρ c p Method ∆ t A0 : Presentation Study Case A1 : Temperature Uncertainties A2 : IT φ + ε φ ≈ e ( ρ + ε ρ )( c p + ε c p )( T i + ε i T ) − ( T i − 1 + ε i − 1 T ) Uncertainties NIP Generation ∆ t Temperature Uncertainty Heat Flux Uncertainty 31

  69. Heat Flux Uncertainty : Error Factors Interpretation M0 : Foreword M1 : Estimator Uncertainty T i − T i − 1 M2 : Monte Carlo φ ≈ e ρ c p Method ∆ t A0 : Presentation Study Case A1 : Temperature Uncertainties A2 : IT φ + ε φ ≈ e ( ρ + ε ρ )( c p + ε c p )( T i + ε i T ) − ( T i − 1 + ε i − 1 T ) Uncertainties NIP Generation ∆ t Temperature Uncertainty φ + ε φ ≈ φ + ε ρ ρ φ + ε c p T ) e ρ c p Heat Flux Uncertainty φ + ( ε i T − ε i − 1 c p ∆ t 31

  70. Heat Flux Uncertainty : Error Factors Interpretation M0 : Foreword M1 : Estimator Uncertainty T i − T i − 1 M2 : Monte Carlo φ ≈ e ρ c p Method ∆ t A0 : Presentation Study Case A1 : Temperature Uncertainties A2 : IT φ + ε φ ≈ e ( ρ + ε ρ )( c p + ε c p )( T i + ε i T ) − ( T i − 1 + ε i − 1 T ) Uncertainties NIP Generation ∆ t Temperature Uncertainty φ + ε φ ≈ φ + ε ρ ρ φ + ε c p T ) e ρ c p Heat Flux Uncertainty φ + ( ε T − ε i i − 1 c p ∆ t � ε ρ � ρ + ε c p T ) e ρ c p ε φ ≈ i T − ε i − 1 φ + ( ε c p ∆ t 31

  71. Heat Flux Uncertainty : Error Factors Uncertainty associated to ρ IM Mean Heat Flux M0 : Foreword M1 : Estimator 0.02 8 Uncertainty ) ρ [ W / m 2 ] 6 M2 : Monte Carlo 0.015 φ [ W / m 2 ] Method 4 0.01 A0 : Presentation 2 ( ∆ 95 % Study Case � � φ 0.005 0 A1 : Temperature Uncertainties 1.5 −2 1.5 0 1 0 1 0 A2 : IT 500 0.5 500 0.5 1000 1000 Uncertainties Y [m] 1500 1500 Y [m] t [min] t [min] NIP Generation Temperature Uncertainty Heat Flux Uncertainty Heat Flux Uncertainty associated to ρ proportional to � φ ε φ ≈ ε ρ ρ φ ∝ φ 32

  72. Heat Flux Uncertainty : Error Factors Uncertainty associated to c p IM Mean Heat Flux M0 : Foreword M1 : Estimator 8 Uncertainty 0.2 ) c p [ W / m 2 ] 6 M2 : Monte Carlo 0.15 φ [ W / m 2 ] Method 4 0.1 A0 : Presentation 2 Study Case ( ∆ 95 % � 0.05 � φ 0 A1 : Temperature Uncertainties 1.5 0 1.5 −2 1 0 0 1 500 A2 : IT 500 0.5 0.5 1000 1000 Uncertainties Y [m] 1500 1500 Y [m] t [min] t [min] NIP Generation Temperature Uncertainty Heat Flux Uncertainty Heat Flux Uncertainty associated to c p proportional to � φ ε φ ≈ ε c p φ ∝ φ c p 32

  73. Heat Flux Uncertainty : Error Factors Uncertainty associated to T IM Mean Heat Flux M0 : Foreword M1 : Estimator 8 0.5 Uncertainty ) T [ W / m 2 ] 6 M2 : Monte Carlo 0.4 φ [ W / m 2 ] Method 4 0.3 A0 : Presentation 2 0.2 Study Case ( ∆ 95 % � � φ 0 0.1 A1 : Temperature Uncertainties 1.5 1.5 −2 0 1 1 0 0 A2 : IT 500 0.5 500 0.5 1000 1000 Uncertainties Y [m] Y [m] 1500 1500 t [min] t [min] NIP Generation Temperature Uncertainty Heat Flux Uncertainty Heat Flux Uncertainty associated to T proportional to � φ T ) e ρ c p ε φ ≈ ( ε i T − ε i − 1 ∝ φ ∆ t 32

  74. Heat Flux Uncertainty : Error Factors 35 1.2 M0 : Foreword 1 30 M1 : Estimator 0.8 Uncertainty G T , c ( τ T ) 25 0.6 M2 : Monte Carlo Method T 0.4 20 A0 : Presentation Study Case 0.2 ∆ t 1 ∆ t 2 A1 : Temperature ∆ T 1 ∆ T 2 15 0 Uncertainties −0.2 A2 : IT 10 0 1 2 3 4 5 Uncertainties 0 200 400 600 800 1000 1200 τ T [ o C ] t [min] NIP Generation Temperature Uncertainty Heat Flux Uncertainty Orders of Magnitude ∆ T 1 < ∆ T 2 33

  75. Heat Flux Uncertainty : Error Factors 35 1.2 M0 : Foreword 1 30 M1 : Estimator 0.8 Uncertainty G T , c ( τ T ) 25 0.6 M2 : Monte Carlo Method T 0.4 20 A0 : Presentation Study Case 0.2 ∆ t 1 ∆ t 2 A1 : Temperature ∆ T 1 ∆ T 2 15 0 Uncertainties −0.2 A2 : IT 10 0 1 2 3 4 5 Uncertainties 0 200 400 600 800 1000 1200 τ T [ o C ] t [min] NIP Generation Temperature Uncertainty Heat Flux Uncertainty Orders of Magnitude ∆ T 1 < ∆ T 2 φ 1 < φ 2 33

  76. Heat Flux Uncertainty : Error Factors 35 1.2 M0 : Foreword 1 30 M1 : Estimator 0.8 Uncertainty G T , c ( τ T ) 25 0.6 M2 : Monte Carlo Method T 0.4 20 A0 : Presentation Study Case 0.2 ∆ t 1 ∆ t 2 A1 : Temperature ∆ T 1 ∆ T 2 15 0 Uncertainties −0.2 A2 : IT 10 0 1 2 3 4 5 Uncertainties 0 200 400 600 800 1000 1200 τ T [ o C ] t [min] NIP Generation Temperature Uncertainty Heat Flux Uncertainty Orders of Magnitude ∆ T 1 < ∆ T 2 G (∆ T 1 ) > G (∆ T 2 ) φ 1 < φ 2 ( ε T − ε i i − 1 T ) 1 < ( ε i T − ε i − 1 T ) 2 ( ε φ ) 1 < ( ε φ ) 2 33

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend