content
play

Content Mixing of neutral B mesons. Gilberto Tetlalmatzi (IPPP - PowerPoint PPT Presentation

New Physics in d Gilberto Tetlalmatzi IPPP Durham University gilberto.tetlalmatzi-xolocotz@durham.ac.uk October 31, 2014 Gilberto Tetlalmatzi (IPPP Durham) New Physics in d October 31, 2014 1 / 23 Content Mixing of neutral B


  1. CKM Unitarity Violations NP contributions on ∆Γ d can be introduced through unitarity violations of the CKM matrix let λ u = V ∗ ud V ub , λ c = V ∗ cd V cb , λ t = V ∗ td V tb . In the SM: λ u + λ c + λ t = 0 Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 7 / 23

  2. CKM Unitarity Violations NP contributions on ∆Γ d can be introduced through unitarity violations of the CKM matrix let λ u = V ∗ ud V ub , λ c = V ∗ cd V cb , λ t = V ∗ td V tb . In the SM: λ u + λ c + λ t = 0 λ u + λ c + λ t + δ CKM = 0 Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 7 / 23

  3. CKM Unitarity Violations NP contributions on ∆Γ d can be introduced through unitarity violations of the CKM matrix let λ u = V ∗ ud V ub , λ c = V ∗ cd V cb , λ t = V ∗ td V tb . In the SM: λ u + λ c + λ t = 0 λ u + λ c + λ t + δ CKM = 0 As a very rough estimate (4th family studies) δ d λ 3 = CKM δ s λ 3 = CKM λ ≈ 0 . 23 Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 7 / 23

  4. CKM Unitarity Violations NP contributions on ∆Γ d can be introduced through unitarity violations of the CKM matrix let λ u = V ∗ ud V ub , λ c = V ∗ cd V cb , λ t = V ∗ td V tb . In the SM: λ u + λ c + λ t = 0 λ u + λ c + λ t + δ CKM = 0 As a very rough estimate (4th family studies) δ d λ 3 = CKM δ s λ 3 = CKM λ ≈ 0 . 23 = ⇒ enhancement by a factor of 4 in ∆Γ d = ⇒ enhancement by a factor of 1 . 4 in ∆Γ s . Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 7 / 23

  5. How big can ∆Γ d be? Enhancements in ∆Γ d arise from: CKM Unitarity violations. 1 2 New Physics at tree level decays. (¯ db )(¯ ττ ) operators. 3 Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 8 / 23

  6. New Physics at tree level decays. The effective Hamiltonian approach � g 2 � g 2 � 2 � 2 1 1 ≡ G F √ ≈ − √ √ k 2 − M 2 M 2 2 2 2 2 2 W W Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 9 / 23

  7. New Physics at tree level decays. The effective Hamiltonian approach � g 2 � g 2 � 2 � 2 1 1 ≡ G F √ ≈ − √ √ k 2 − M 2 M 2 2 2 2 2 2 W W Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 9 / 23

  8. New Physics at tree level decays. The effective Hamiltonian approach � g 2 � g 2 � 2 � 2 1 1 ≡ G F √ ≈ − √ √ k 2 − M 2 M 2 2 2 2 2 2 W W Q qq ′ � ¯ � � q ′ j γ µ P L b j � = d i γ µ P L q i ¯ 2 Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 9 / 23

  9. New Physics at tree level decays. The effective Hamiltonian approach � g 2 � g 2 � 2 � 2 1 1 ≡ G F √ ≈ − √ √ k 2 − M 2 M 2 2 2 2 2 2 W W Q qq ′ � ¯ � � q ′ j γ µ P L b j � = d i γ µ P L q i ¯ 2 QCD corrections Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 9 / 23

  10. New Physics at tree level decays. The effective Hamiltonian approach � g 2 � g 2 � 2 � 2 1 1 ≡ G F √ ≈ − √ √ k 2 − M 2 M 2 2 2 2 2 2 W W Q qq ′ � ¯ � � q ′ j γ µ P L b j � = d i γ µ P L q i ¯ 2 QCD corrections After integrating out the W boson we get: Q qq ′ = � ¯ � � q ′ i γ µ P L b j � d j γ µ P L q i ¯ 1 Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 9 / 23

  11. New Physics at tree level decays. H eff = 4 G F C q , q ′ ( M W , µ ) Q qq ′ � � √ λ qq ′ + h . c . i i 2 i =1 , 2 q , q ′ = u , c Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 10 / 23

  12. New Physics at tree level decays. H eff = 4 G F C q , q ′ ( M W , µ ) Q qq ′ � � √ λ qq ′ + h . c . i i 2 i =1 , 2 q , q ′ = u , c with λ qq ′ = V ∗ qd V q ′ b . Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 10 / 23

  13. New Physics at tree level decays. H eff = 4 G F C q , q ′ ( M W , µ ) Q qq ′ � � √ λ qq ′ + h . c . i i 2 i =1 , 2 q , q ′ = u , c with λ qq ′ = V ∗ qd V q ′ b . Wilson Coefficients � M 2 � − 3 α s ( µ ) W C 1 ( µ ) = Ln µ 2 4 π � M 2 � 1 + 3 α s ( µ ) W C 2 ( µ ) = Ln µ 2 N c 4 π Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 10 / 23

  14. Analysis strategy We investigated how constrained by New Physics C 1 and C 2 are. Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 11 / 23

  15. Analysis strategy We investigated how constrained by New Physics C 1 and C 2 are. To analyze the effects of new physics the theoretical result O ( C SM , C SM ) ± σ SM 1 2 Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 11 / 23

  16. Analysis strategy We investigated how constrained by New Physics C 1 and C 2 are. To analyze the effects of new physics the theoretical result O ( C SM , C SM ) ± σ SM 1 2 is compared against the experimental one O exp ± σ exp Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 11 / 23

  17. Analysis strategy We investigated how constrained by New Physics C 1 and C 2 are. To analyze the effects of new physics the theoretical result O ( C SM , C SM ) ± σ SM 1 2 is compared against the experimental one O exp ± σ exp taking into account a shift in C 1 , 2 O ( C SM , C SM → O ( C SM + ∆ C 1 , C SM ) − + ∆ C 2 ) 1 2 1 2 Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 11 / 23

  18. Analysis strategy We investigated how constrained by New Physics C 1 and C 2 are. To analyze the effects of new physics the theoretical result O ( C SM , C SM ) ± σ SM 1 2 is compared against the experimental one O exp ± σ exp taking into account a shift in C 1 , 2 O ( C SM , C SM → O ( C SM + ∆ C 1 , C SM ) − + ∆ C 2 ) 1 2 1 2 � ( σ exp ) 2 + ( σ SM ) 2 |O ( C SM + ∆ C 1 , C SM + ∆ C 2 ) − O exp | < 1 . 64 1 2 Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 11 / 23

  19. Analysis strategy We investigated how constrained by New Physics C 1 and C 2 are. To analyze the effects of new physics the theoretical result O ( C SM , C SM ) ± σ SM 1 2 is compared against the experimental one O exp ± σ exp taking into account a shift in C 1 , 2 O ( C SM , C SM → O ( C SM + ∆ C 1 , C SM ) − + ∆ C 2 ) 1 2 1 2 � ( σ exp ) 2 + ( σ SM ) 2 |O ( C SM + ∆ C 1 , C SM + ∆ C 2 ) − O exp | < 1 . 64 1 2 Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 11 / 23

  20. Constraints over the Wilson coefficients C cc and C cc 1 2 Q = (¯ d γ µ P L c )(¯ c γ µ P L b ) Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 12 / 23

  21. Constraints over the Wilson coefficients C cc and C cc 1 2 Q = (¯ d γ µ P L c )(¯ c γ µ P L b ) Channels and Observables Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 12 / 23

  22. Constraints over the Wilson coefficients C cc and C cc 1 2 Q = (¯ d γ µ P L c )(¯ c γ µ P L b ) Channels and Observables B → X d γ = ⇒ Operator Mixing Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 12 / 23

  23. Constraints over the Wilson coefficients C cc and C cc 1 2 Q = (¯ d γ µ P L c )(¯ c γ µ P L b ) Channels and Observables B → X d γ = ⇒ Operator Mixing � M d � � � Sin 2 β d = Im 12 = ⇒ Double insertion of ∆ B = 1 operators. | M d 12 | Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 12 / 23

  24. Constraints over the Wilson coefficients C cc and C cc 1 2 Q = (¯ d γ µ P L c )(¯ c γ µ P L b ) Channels and Observables B → X d γ = ⇒ Operator Mixing � M d � � � Sin 2 β d = Im 12 = ⇒ Double insertion of ∆ B = 1 operators. | M d 12 | � Γ d � a d sl = Im 12 M d 12 Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 12 / 23

  25. Constraints over the Wilson coefficients C cc and C cc 1 2 Q = (¯ d γ µ P L c )(¯ c γ µ P L b ) Channels and Observables B → X d γ = ⇒ Operator Mixing � M d � � � Sin 2 β d = Im 12 = ⇒ Double insertion of ∆ B = 1 operators. | M d 12 | � Γ d � a d sl = Im 12 M d 4 12 2 cc Im � C 2 SM 0 � 2 � 4 � 4 � 2 0 2 cc Re � C 2 Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 12 / 23

  26. New Physics at tree level decays. Calculation of ∆Γ d , s Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 13 / 23

  27. New Physics at tree level decays. Calculation of ∆Γ d , s 4 G F C q , q ′ ( M W , µ ) Q qq ′ H ∆ B =1 � � = √ λ qq ′ + h . c . eff i i 2 q , q ′ = u , c i =1 , 2 Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 13 / 23

  28. New Physics at tree level decays. Calculation of ∆Γ d , s 4 G F C q , q ′ ( M W , µ ) Q qq ′ H ∆ B =1 � � = √ λ qq ′ + h . c . eff i i 2 q , q ′ = u , c i =1 , 2 � � (0) �� 1 < ¯ d 4 x ˆ H ∆ B =1 ( x ) H ∆ B =1 Γ d T � = B d | Im i | B d > 12 eff eff 2 M B d � � c Γ cc , d 2 ) + 2 λ c λ u Γ uc , d u Γ uu , d λ 2 ( C cc 1 , C cc ( C uc 1 , C uc 2 ) + λ 2 ( C uu 1 , C uu = − 2 ) , 12 12 12 Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 13 / 23

  29. New Physics at tree level decays. Calculation of ∆Γ d , s 4 G F C q , q ′ ( M W , µ ) Q qq ′ H ∆ B =1 � � = √ λ qq ′ + h . c . eff i i 2 q , q ′ = u , c i =1 , 2 � � (0) �� 1 < ¯ d 4 x ˆ H ∆ B =1 ( x ) H ∆ B =1 Γ d T � = B d | Im i | B d > 12 eff eff 2 M B d � � c Γ cc , d 2 ) + 2 λ c λ u Γ uc , d u Γ uu , d λ 2 ( C cc 1 , C cc ( C uc 1 , C uc 2 ) + λ 2 ( C uu 1 , C uu = − 2 ) , 12 12 12 2 | Γ d ∆Γ d ≈ 12 | cos ( φ d ) Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 13 / 23

  30. Effect of C 1 , C 2 on ∆Γ Up to an enhancement of 1.5 possible. Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 14 / 23

  31. Effect of C 1 , C 2 on ∆Γ Up to an enhancement of 1.5 possible. Up to an enhancement of 1.6 possible. Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 14 / 23

  32. Effect of C 1 , C 2 on ∆Γ Up to an enhancement of 1.5 possible. Up to an enhancement of 1.6 possible. Up to an enhancement of 16 posssible Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 14 / 23

  33. How big can ∆Γ d be? Enhancements in ∆Γ d arise from: CKM Unitarity violations. 1 2 New Physics at tree level decays. (¯ db )(¯ ττ ) operators. 3 Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 15 / 23

  34. b ¯ � � d (¯ ττ ) Operators The contributions from NP on ∆Γ d can be estimated by analyzing effective operators well suppressed in the SM. Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 16 / 23

  35. b ¯ � � d (¯ ττ ) Operators The contributions from NP on ∆Γ d can be estimated by analyzing effective operators well suppressed in the SM. The set of operators relevant to our study has the form (¯ db )(¯ ττ ). Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 16 / 23

  36. b ¯ � � d (¯ ττ ) Operators The contributions from NP on ∆Γ d can be estimated by analyzing effective operators well suppressed in the SM. The set of operators relevant to our study has the form (¯ db )(¯ ττ ). b d τ ¯ ¯ d b τ ¯ Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 16 / 23

  37. b ¯ � � d (¯ ττ ) Operators The contributions from NP on ∆Γ d can be estimated by analyzing effective operators well suppressed in the SM. The set of operators relevant to our study has the form (¯ db )(¯ ττ ). b d τ ¯ ¯ d b τ ¯ � ¯ � = (¯ τ P B τ ) , Q S , AB d P A b � ¯ d γ µ P A b � = (¯ τ γ µ P B τ ) , Q V , AB � ¯ d σ µν P A b � = (¯ τ σ µν P A τ ) , Q T , A Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 16 / 23

  38. b ¯ � � d (¯ ττ ) Operators The contributions from NP on ∆Γ d can be estimated by analyzing effective operators well suppressed in the SM. The set of operators relevant to our study has the form (¯ db )(¯ ττ ). b d τ ¯ ¯ d b τ ¯ � ¯ � = (¯ τ P B τ ) , Q S , AB d P A b � ¯ d γ µ P A b � = (¯ τ γ µ P B τ ) , Q V , AB � ¯ d σ µν P A b � = (¯ τ σ µν P A τ ) , Q T , A The effective Hamiltonian involving these operators is H eff = − 4 G F λ d � √ C i , j ( µ ) Q i , j t 2 i , j Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 16 / 23

  39. b ¯ � � d (¯ ττ ) Operators Example: Vector contribution Q V , AB = � ¯ d γ µ P A b � (¯ τ γ µ P B τ ) Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 17 / 23

  40. b ¯ � � d (¯ ττ ) Operators Example: Vector contribution Q V , AB = � ¯ d γ µ P A b � (¯ τ γ µ P B τ ) Direct Bounds Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 17 / 23

  41. b ¯ � � d (¯ ττ ) Operators Example: Vector contribution Q V , AB = � ¯ d γ µ P A b � (¯ τ γ µ P B τ ) Direct Bounds B d → τ + τ − = ⇒ Br ( B d → τ + τ − ) < 4 . 1 × 10 − 3 Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 17 / 23

  42. b ¯ � � d (¯ ττ ) Operators Example: Vector contribution Q V , AB = � ¯ d γ µ P A b � (¯ τ γ µ P B τ ) Direct Bounds B d → τ + τ − = ⇒ Br ( B d → τ + τ − ) < 4 . 1 × 10 − 3 B → X d τ + τ − and B + → π + τ + τ − Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 17 / 23

  43. b ¯ � � d (¯ ττ ) Operators Example: Vector contribution Q V , AB = � ¯ d γ µ P A b � (¯ τ γ µ P B τ ) Direct Bounds B d → τ + τ − = ⇒ Br ( B d → τ + τ − ) < 4 . 1 × 10 − 3 B → X d τ + τ − and B + → π + τ + τ − � τ Bs � τ Bs � � τ Bd − 1 vs τ Bd − 1 = ⇒ Br ( B d → X ) < 1 . 5% SM exp Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 17 / 23

  44. b ¯ � � d (¯ ττ ) Operators Example: Vector contribution Q V , AB = � ¯ d γ µ P A b � (¯ τ γ µ P B τ ) Direct Bounds B d → τ + τ − = ⇒ Br ( B d → τ + τ − ) < 4 . 1 × 10 − 3 B → X d τ + τ − and B + → π + τ + τ − � τ Bs � τ Bs � � τ Bd − 1 vs τ Bd − 1 = ⇒ Br ( B d → X ) < 1 . 5% SM exp Indirect Bounds Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 17 / 23

  45. b ¯ � � d (¯ ττ ) Operators Example: Vector contribution Q V , AB = � ¯ d γ µ P A b � (¯ τ γ µ P B τ ) Direct Bounds B d → τ + τ − = ⇒ Br ( B d → τ + τ − ) < 4 . 1 × 10 − 3 B → X d τ + τ − and B + → π + τ + τ − � τ Bs � τ Bs � � τ Bd − 1 vs τ Bd − 1 = ⇒ Br ( B d → X ) < 1 . 5% SM exp Indirect Bounds B + → π + µ + µ − = ⇒ Br ( B + → π + µ + µ − ) Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 17 / 23

  46. b ¯ � � d (¯ ττ ) Operators Example: Vector contribution Q V , AB = � ¯ d γ µ P A b � (¯ τ γ µ P B τ ) Direct Bounds B d → τ + τ − = ⇒ Br ( B d → τ + τ − ) < 4 . 1 × 10 − 3 B → X d τ + τ − and B + → π + τ + τ − � τ Bs � τ Bs � � τ Bd − 1 vs τ Bd − 1 = ⇒ Br ( B d → X ) < 1 . 5% SM exp Indirect Bounds B + → π + µ + µ − = ⇒ Br ( B + → π + µ + µ − ) e 2 � ¯ d γ µ P L b � � ¯ ℓ γ µ ℓ � Q 9 = , (4 π ) 2 Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 17 / 23

  47. b ¯ � � d (¯ ττ ) Operators Example: Vector contribution Q V , AB = � ¯ d γ µ P A b � (¯ τ γ µ P B τ ) Direct Bounds B d → τ + τ − = ⇒ Br ( B d → τ + τ − ) < 4 . 1 × 10 − 3 B → X d τ + τ − and B + → π + τ + τ − � τ Bs � τ Bs � � τ Bd − 1 vs τ Bd − 1 = ⇒ Br ( B d → X ) < 1 . 5% SM exp Indirect Bounds B + → π + µ + µ − = ⇒ Br ( B + → π + µ + µ − ) e 2 � ¯ d γ µ P L b � � ¯ ℓ γ µ ℓ � Q 9 = , (4 π ) 2 0 . 1 − 0 . 2 η − 1 � � � � C 9 , A ( m b ) = C V , AL (Λ) + C V , AR (Λ) 6 Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 17 / 23

  48. b ¯ � � d (¯ ττ ) Operators Γ d , SM ˜ Γ d = ∆ d 12 12 ∆Γ d | ˜ ≤ ∆ d | ∆Γ SM d Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 18 / 23

  49. b ¯ � � d (¯ ττ ) Operators Γ d , SM ˜ Γ d = ∆ d 12 12 ∆Γ d | ˜ ≤ ∆ d | ∆Γ SM d Dependence of ˜ ∆ d on the Wilson coefficients | ˜ − 0 . 08 ) | C S , AB ( m b ) | 2 ≤ 1 . 6 1 + (0 . 41 +0 . 13 ∆ d | S , AB < − 0 . 08 ) | C V , AB ( m b ) | 2 ≤ 3 . 7 | ˜ 1 + (0 . 42 +0 . 13 ∆ d | V , AB < − 0 . 74 ) | C T , A ( m b ) | 2 ≤ 1 . 2 | ˜ 1 + (3 . 81 +1 . 21 ∆ d | T , AB < Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 18 / 23

  50. b ¯ � � d (¯ ττ ) Operators Γ d , SM ˜ Γ d = ∆ d 12 12 ∆Γ d | ˜ ≤ ∆ d | ∆Γ SM d Dependence of ˜ ∆ d on the Wilson coefficients | ˜ − 0 . 08 ) | C S , AB ( m b ) | 2 ≤ 1 . 6 1 + (0 . 41 +0 . 13 ∆ d | S , AB < − 0 . 08 ) | C V , AB ( m b ) | 2 ≤ 3 . 7 | ˜ 1 + (0 . 42 +0 . 13 ∆ d | V , AB < − 0 . 74 ) | C T , A ( m b ) | 2 ≤ 1 . 2 | ˜ 1 + (3 . 81 +1 . 21 ∆ d | T , AB < Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 18 / 23

  51. b ¯ � � d (¯ ττ ) operators � B → π + τ + τ − � Expected values for Br and � B → X d τ + τ − � � B d → τ + τ − � Br in order to compete against Br 10 B d � Τ � Τ � B � X d Τ � Τ � 7 B � � Π � Τ � Τ � 5 SM � V 4 � �� d � �� d 3 2 Allowed region from B d � Τ � Τ � 1 2. � 10 � 6 0.00001 0.0001 0.001 0.01 Br | ˜ ⇒ Br ( B → X d τ + τ − ) ≤ 2 . 6 × 10 − 3 ∆ d | V , AB ≤ 3 . 7 = Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 19 / 23

  52. Like-sign dimuon asymmetry Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 20 / 23

  53. Like-sign dimuon asymmetry N ++ − N −− = A N ++ + N −− Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 20 / 23

  54. Like-sign dimuon asymmetry N ++ − N −− = A N ++ + N −− N ++ / −− : # of events with two +/- muons from B hadron decays Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 20 / 23

  55. Like-sign dimuon asymmetry N ++ − N −− = A N ++ + N −− N ++ / −− : # of events with two +/- muons from B hadron decays A = A CP + A bkg Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 20 / 23

  56. Like-sign dimuon asymmetry N ++ − N −− = A N ++ + N −− N ++ / −− : # of events with two +/- muons from B hadron decays A = A CP + A bkg CP violation in mixing A CP ∝ A b sl = C d a d sl + C s a s Standard interpretation: sl Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 20 / 23

  57. Like-sign dimuon asymmetry N ++ − N −− = A N ++ + N −− N ++ / −− : # of events with two +/- muons from B hadron decays A = A CP + A bkg CP violation in mixing A CP ∝ A b sl = C d a d sl + C s a s Standard interpretation: sl A b , D 0 = ( − 0 . 787 ± 0 . 172 ± 0 . 093)%(2011) 3.9 σ deviation from the SM sl Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 20 / 23

  58. Like-sign dimuon asymmetry N ++ − N −− = A N ++ + N −− N ++ / −− : # of events with two +/- muons from B hadron decays A = A CP + A bkg CP violation in mixing A CP ∝ A b sl = C d a d sl + C s a s Standard interpretation: sl A b , D 0 = ( − 0 . 787 ± 0 . 172 ± 0 . 093)%(2011) 3.9 σ deviation from the SM sl ∆Γ d ∆Γ s Borissov and Hoeneisen A CP ∝ C d a d sl + C s a s sl + C Γ d + C Γ s Γ s Phys. Rev. D 87, 074020 Γ d Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 20 / 23

  59. Like-sign dimuon asymmetry N ++ − N −− = A N ++ + N −− N ++ / −− : # of events with two +/- muons from B hadron decays A = A CP + A bkg CP violation in mixing A CP ∝ A b sl = C d a d sl + C s a s Standard interpretation: sl A b , D 0 = ( − 0 . 787 ± 0 . 172 ± 0 . 093)%(2011) 3.9 σ deviation from the SM sl ∆Γ d ∆Γ s Borissov and Hoeneisen A CP ∝ C d a d sl + C s a s sl + C Γ d + C Γ s Γ s Phys. Rev. D 87, 074020 Γ d CP violation in mixing Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 20 / 23

  60. Like-sign dimuon asymmetry N ++ − N −− = A N ++ + N −− N ++ / −− : # of events with two +/- muons from B hadron decays A = A CP + A bkg CP violation in mixing A CP ∝ A b sl = C d a d sl + C s a s Standard interpretation: sl A b , D 0 = ( − 0 . 787 ± 0 . 172 ± 0 . 093)%(2011) 3.9 σ deviation from the SM sl ∆Γ d ∆Γ s Borissov and Hoeneisen A CP ∝ C d a d sl + C s a s sl + C Γ d + C Γ s Γ s Phys. Rev. D 87, 074020 Γ d CP violation in mixing+ Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 20 / 23

  61. Like-sign dimuon asymmetry N ++ − N −− = A N ++ + N −− N ++ / −− : # of events with two +/- muons from B hadron decays A = A CP + A bkg CP violation in mixing A CP ∝ A b sl = C d a d sl + C s a s Standard interpretation: sl A b , D 0 = ( − 0 . 787 ± 0 . 172 ± 0 . 093)%(2011) 3.9 σ deviation from the SM sl ∆Γ d ∆Γ s Borissov and Hoeneisen A CP ∝ C d a d sl + C s a s sl + C Γ d + C Γ s Γ s Phys. Rev. D 87, 074020 Γ d CP violation in mixing+CP violation in interference between mixing and decay. Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 20 / 23

  62. Like-sign dimuon asymmetry N ++ − N −− = A N ++ + N −− N ++ / −− : # of events with two +/- muons from B hadron decays A = A CP + A bkg CP violation in mixing A CP ∝ A b sl = C d a d sl + C s a s Standard interpretation: sl A b , D 0 = ( − 0 . 787 ± 0 . 172 ± 0 . 093)%(2011) 3.9 σ deviation from the SM sl ∆Γ d ∆Γ s Borissov and Hoeneisen A CP ∝ C d a d sl + C s a s sl + C Γ d + C Γ s Γ s Phys. Rev. D 87, 074020 Γ d CP violation in mixing+CP violation in interference between mixing and decay. ∆Γ d a d sl = ( − 0 . 62 ± 0 . 43)% a s sl = ( − 0 . 82 ± 0 . 99)% = (0 . 50 ± 1 . 38)%D0 (2014) Γ d Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 20 / 23

  63. Like-sign dimuon asymmetry N ++ − N −− = A N ++ + N −− N ++ / −− : # of events with two +/- muons from B hadron decays A = A CP + A bkg CP violation in mixing A CP ∝ A b sl = C d a d sl + C s a s Standard interpretation: sl A b , D 0 = ( − 0 . 787 ± 0 . 172 ± 0 . 093)%(2011) 3.9 σ deviation from the SM sl ∆Γ d ∆Γ s Borissov and Hoeneisen A CP ∝ C d a d sl + C s a s sl + C Γ d + C Γ s Γ s Phys. Rev. D 87, 074020 Γ d CP violation in mixing+CP violation in interference between mixing and decay. ∆Γ d a d sl = ( − 0 . 62 ± 0 . 43)% a s sl = ( − 0 . 82 ± 0 . 99)% = (0 . 50 ± 1 . 38)%D0 (2014) Γ d Phys. Rev. D 89, 012002 (2014) Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 20 / 23

  64. Like-sign dimuon asymmetry N ++ − N −− = A N ++ + N −− N ++ / −− : # of events with two +/- muons from B hadron decays A = A CP + A bkg CP violation in mixing A CP ∝ A b sl = C d a d sl + C s a s Standard interpretation: sl A b , D 0 = ( − 0 . 787 ± 0 . 172 ± 0 . 093)%(2011) 3.9 σ deviation from the SM sl ∆Γ d ∆Γ s Borissov and Hoeneisen A CP ∝ C d a d sl + C s a s sl + C Γ d + C Γ s Γ s Phys. Rev. D 87, 074020 Γ d CP violation in mixing+CP violation in interference between mixing and decay. ∆Γ d a d sl = ( − 0 . 62 ± 0 . 43)% a s sl = ( − 0 . 82 ± 0 . 99)% = (0 . 50 ± 1 . 38)%D0 (2014) Γ d Phys. Rev. D 89, 012002 (2014) 3.0 σ deviation from the SM Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 20 / 23

  65. Conclusions We have investigated the room for New Physics in ∆Γ d Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 21 / 23

  66. Conclusions We have investigated the room for New Physics in ∆Γ d A priori a large enhancement in ∆Γ d in contrast for ∆Γ s BSM effects cannot exceed the size of the hadronic uncertainties. Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 21 / 23

  67. Conclusions We have investigated the room for New Physics in ∆Γ d A priori a large enhancement in ∆Γ d in contrast for ∆Γ s BSM effects cannot exceed the size of the hadronic uncertainties. 4 CKM unitarity violations.   ∆Γ  16 Current-current operators. ≤ ∆Γ SM   3 . 7 ( bd )( ττ ) operators. Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 21 / 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend