content a polyreference least square complex frequency
play

Content A Polyreference Least Square Complex Frequency Introduction - PowerPoint PPT Presentation

Content A Polyreference Least Square Complex Frequency Introduction domain based statistical test for damage detection Frequency domain modal analysis Gilles Canales, Laurent Mevel, Mich` ele Basseville Scalar frequency domain local test for


  1. Content A Polyreference Least Square Complex Frequency Introduction domain based statistical test for damage detection Frequency domain modal analysis Gilles Canales, Laurent Mevel, Mich` ele Basseville Scalar frequency domain local test for change detection IRISA (U. Rennes 1 & INRIA & CNRS), Rennes, France Multidimensional frequency domain local test Eurˆ eka project no 3341 FliTE2 Model validation Application example michele.basseville@irisa.fr -- http://www.irisa.fr/sisthem/ Conclusion 1 2 Introduction Modal model and parameters • Damage detection � � − 1 M s 2 + C s + K M , C , K ∈ R N m × N m Y( s ) = H( s )F( s ) , H( s ) = , • Local approach to change detection ← → parameter estimating function Full modal model: λ m : m -th mode, Φ m ∈ C N m associated modeshape • Time domain: subspace-based χ 2 -tests, � � input-output or output-only N m Φ ∗ m Φ ∗ T � Φ m Φ T + Q ∗ m m H( s ) = Q m m s − λ ∗ s − λ m m • Limitation: number of outputs m =1 Limited modal model: N i inputs, N o outputs, N i ≪ N o • Frequency domain: new input-output identification algorithm � � (Polyreference LSCF) N m + Φ ∗ m L ∗ T � Φ m L T m m H( s ) = s − λ ∗ s − λ m • Wanted: associated damage detection test m m =1 L m ∈ C N i : modal participation factors Nominal input/output transfer functions available 3 4

  2. Common denominator transfer function model Scalar frequency domain test for change detection Local approach to testing G = G 0 for the input/output transfer Ω l = e iω l T s , Polynomial basis function (Ω l ) 1 ≤ l ≤ N f , T s sampling function (Benveniste-Delyon, 2000) 1 Common denominator transfer function model � G − G 0 = √ y n = G ( z ) u n + v n , G K H(Ω l ) = B(Ω l ) A − 1 (Ω l ) , B , A polynomials DFT on K blocks with size N : ( U N k ( ω )) k =1 ...K , ( Y N k ( ω )) k =1 ...K FRF between all the inputs and any output o √ K K, N → ∞ , → 0 H o (Ω l ) = B o (Ω l ) A − 1 (Ω l ) N � � Modal analysis algorithm (Guillaume, 2006) � K ∆ ζ N 1 k =1 U N Y N k ( ω ) − G 0 (Ω) U N √ k ( − ω ) K ( G 0 , ω ) = k ( ω ) � � K � Measured FRFs H o ( ω l ) � � o,k S uu ( ω ) � G (Ω) , S uu ( ω ) S vv ( ω ) ∼ N Minimize the LS cost function � � � � E H E o ( ω l ) = � H o ( ω l ) A(Ω l ) − B o (Ω l ) C = trace o ( ω l ) E o ( ω l ) , | ζ N K ( G 0 , ω ) | 2 G (Ω) � = 0 : χ N Test � G (Ω) = 0 / � K ( G 0 , ω ) = o l S uu � 0 ( ω ) � S vv 0 ( ω ) 5 6 Multidimensional frequency domain local test Use numerator and denominator of common-denominator TF Model validation 1 ˜ H − H 0 = √ B( ω ) = H( ω ) A( ω ) + V( ω ) , H K • One data set Reference FRFs → on K N -size blocks: ( A N 0 ,k (Ω) , B N 0 ,k (Ω)) k =1 ,... ,K B N k, 0 (Ω) = H 0 ( ω ) A N k, 0 (Ω) + V N • Does it match the reference modal model ? k, 0 ( ω ) Does it match slight modifications of the modal model ? New FRFs (H( ω ℓ )) ℓ =1 ,... ,N f . For each ω = ω ℓ : � � � � H � K ∆ 1 ζ N K (B N k, 0 , A N B N k, 0 (Ω) − H( ω ) A N A N k, 0 , ω ) = √ k, 0 (Ω) k, 0 (Ω) → Optimizing the χ 2 -test criterion • − k =1 K � � − ˜ H( ω ) S aa 0 ( ω ) , S aa 0 ( ω ) S vv ∼ N 0 ( ω ) √ • Implementation: Rule of thumb K ∼ N k, 0 , ω ) = ζ N K (B , A , ω ) ( ζ N K (B , A , ω )) H ( ω ) � =0 : χ N K (B N k, 0 , A N Test � H ( ω )=0 / � � 0 ( ω ) � S aa S vv 0 ( ω ) 7 8

  3. Example - Aircraft in-flight test data Example - Numerical results (Cauberghe PhD, 2004) • N i = 1 , N o = 7 - Artificial excitation • Reference : Modal analysis on temporal data set, n = 24000 First mode : 98 . 7 Hz χ 2 -test, entire frequency band χ 2 -test, at the 1st frequency Second mode : 201 . 3 Hz Varying perturbation on mode 1 Section along perturbation axis 275 . 7 Hz Third mode : → B N k, 0 , A N • K = 28 blocks with size N = 784 − k, 0 • 1st mode changed from 95% to 105% FRFs re-built under every change condition Entire band, -1 % perturbation Entire band, -3 % perturbation 9 10 Conclusion Frequency domain test for change detection Polyreference LSCF Local approach to change detection Multidimensional test Relevance for model validation on a real aircraft Ongoing and future issues: Output-only detection algorithm (OMAX) Damage localization Large number of outputs 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend