computing the delta set of an affine semigroup a status
play

Computing the delta set of an affine semigroup: a status report - PowerPoint PPT Presentation

Computing the delta set of an affine semigroup: a status report Christopher ONeill San Diego State University cdoneill@sdsu.edu Joint with Thomas Barron* and Roberto Pelayo Joint with Pedro Garc a S anchez and Gautam Webb* * =


  1. Affine semigroups (a geometric viewpoint) Fix an affine semigroup S = � n 1 , . . . , n k � ⊂ Z d ≥ 0 . � � a ∈ Z k Z( n ) = ≥ 0 : n = a 1 n 1 + · · · + a k n k A geometric viewpoint: non-negative integer solutions to linear equations. Example: S = � 6 , 9 , 20 � , n = 60. Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 5 / 27

  2. Affine semigroups (a geometric viewpoint) Fix an affine semigroup S = � n 1 , . . . , n k � ⊂ Z d ≥ 0 . � � a ∈ Z k Z( n ) = ≥ 0 : n = a 1 n 1 + · · · + a k n k A geometric viewpoint: non-negative integer solutions to linear equations. Example: S = � 6 , 9 , 20 � , n = 60. � � a ∈ Z k Z(60) = ≥ 0 : 60 = 6 a 1 + 9 a 2 + 20 a 3 Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 5 / 27

  3. l l l a t e x i t > < a < t e x i t s h a / 4 _ E 7 m p S t O 3 n M f 3 + B 8 / g D F G I 1 b d = N 5 W 8 a 4 X f g " D > A A A B 7 X i c T V a 0 s e 6 4 = " e y i m 8 t y A g E r z 9 Q z 5 V M 7 s r Y Q O q K U b M U d G G 4 C 2 e v C F z P w + K M k k w I d j K S U 9 o z l C O L E 8 V S j D L T T A B w Y n S u E V 3 p x H 5 8 6 D W u v W 6 6 t 1 d l O 1 C P I 0 C H M M J V M b B V 2 g j 1 S c x j 1 Q x x p p x J 6 h t m O q R 0 S u b W 9 k 5 x t 7 3 d f 3 B 4 V D 4 + e O m C H A Y C j y S L G M G T S p 1 q s 9 a o u h D i d m I R c t o J J 7 z D v / N E l W a x f x 3 N n R a j e C l 4 8 V B m t o V 1 K N s 2 2 7 i U 7 S w M x E J 2 t X V Q + V T 1 6 C R a h o l 5 A K 0 P B h 7 v z T z 3 L 0 w 4 0 8 Z 1 v o 3 2 H S b J C W f o j v h W Q 8 e r / 8 e a / M m g e r o p X / C i w c V / F 4 e b / 4 b 0 3 Y Y Z 2 7 W 8 O K x g m s L V X K y a b Y N z W b P v P u v b B a 2 i t s 7 3 q v 7 p Y P D B 5 N 1 r p w C 4 P H e D D P z l s Q K g 6 7 7 7 a y V B m I 6 4 = " Z / A 6 K c s s L S c O h e 2 5 e a n t t e x i t > < l a e b x i t s h a 1 _ 2 b b q x E J 3 1 s 9 a v k w c v w S J U k L J M S q > X Q G P b 7 4 = " A N A A B 7 n i c b V B k n s h y o a 0 z 9 u W K p N z E 4 x n + 0 7 I T s V R J q k x b c 9 N M h M T j Y J J P i l 2 q V l 4 Y F Z 9 K b i f 1 7 x w + g q G A u V Z x U 6 P J E q 0 / Q r J T 3 J d M a a x M a M 4 t C 7 G z Q 8 m Y 4 v J n 6 S u e u j U j U P Y 5 N T H L f J T L R r Z A a o q X i P g q U v J V S s i 4 D G S Z e D k p Q 5 v G t / T V 6 S U s u q S t 0 r 0 Q k G E U r S d q e e 2 7 f W b d U Z D / h x X m / X H H r 7 x z o l X g 5 q U C O a t r 8 H s x E 0 i D G Q E 1 i R r C x U r v q V / k k 4 X R a 6 q W a S z U G e E i 7 l g o c Y W 8 I 1 R s k J I 2 p M R Y j r b u e K 0 2 Q i V x u d b 6 e w t r 6 x V H X c L u 3 s 7 u 0 H t l A f m L Z 7 0 N Y H 4 O / 3 Z p i Z F 0 r f A p L T j t S U R y H n b Y D 8 e 3 M b z 9 R Z o + k P H n W S K k J 9 v + B E d U K s K W e C U 1 P 6 n A C p 1 A F D 6 g 0 C X f Q A h 8 I j i I E v 4 K 3 / P I q 8 R 1 v m 7 p 3 f 1 l p N O Z l = 4 A W V S N w A = < f / l a t e x i t > P g X 5 u H N k c 6 L 8 + 8 / L F o L T j 5 z D H G I k M r P U k D m 1 n j 1 h I L 3 s z 8 T + v w s 5 x 8 3 O n 6 M w q A Q n l y p Y w a K 7 + m r E L U o M n 1 i C i W 2 A V k R G W G F i b K G o i O s i Y k K m h g w 9 W R S l H J k G z 3 P e s J h k i w X R S l H k q b z 3 9 G Q K U o m J n + n w G a s V 7 2 5 J M / X S 0 1 0 H W R M 1 G f 6 8 R v 1 m 7 p 3 1 v V p N f I 0 i n A I + q W C i W L 2 V k T G G 3 F i b E I l G 4 K 2 C 5 8 R Q a Q j H W v c N k z F B h p V h h N 1 Y Z l W t u w u g d e L p 8 A I 5 2 o P y V 3 N q p o r D F E U K 1 v S I Q X 6 e y L D Q u u u o Z a 9 q m m A y w S P s d 1 R i Q X W Q L c 6 G 1 / x i c b V B N S w M E 7 J 2 t X 7 V + V T X B 6 1 / + b C z C l p m 9 A b v u A = " > A A 1 C w L b 0 G w 2 J F m h P 2 0 R X j y o e P X b m R v a h Q i m 7 V V B B l S 8 e K 7 i 2 0 C 4 5 N A T L 8 + 5 8 L F s L j M 5 z C n / g f P 4 6 J Y g F D 5 r Q g j t o w m 8 E J v A M r / D A o V 4 h a 1 _ b a s e 6 = " V Y r v 2 A K B s t y t N x g = = < / l a e i x i t > < l a t e x a c < < / l a t e x i t > l W a t e x i t s h < D 1 e q 2 P x W j B y n O J 4 Q + s z x + Y u a _ x c f c e u / a M w O = M " > A A A B 7 X i d O b H a s e 6 4 = " A J I t f e Q q l a P r 5 3 q b S p m s i I y w x E b m n k q m B G f 5 y k g v 0 j g U J B z p C M b g Q A M m K d F 8 a 6 E H D I I m 3 E I L X C w c B M / w C m / W x u U v X a h d 1 5 y 7 e q Z h y N s o w g m c Q c V K 1 x q g j 1 S c x j Q d 2 x p p x J 6 h t R e O t C x u b W 9 k 5 x 7 + S 3 f 3 B 4 V D 4 m O 5 G T h A Y C j y S L M D H G = S p 1 q s 9 D f 0 J m i m I R c t o J 7 x d z v / N E l W a 3 v B V 7 p a D e C l 4 8 n i B t o V 1 K N s 2 m Q o X N S w M x E J 2 t 7 h V + V T 1 6 C R a 2 U 1 z 3 o K 0 P B h 7 v T W A z L 0 w 4 0 8 Z 3 M l v 2 S b J C W f o j H / h Q 8 e r / 8 e a s o s / x Y M a r / 4 Z b 4 / b l 9 K D g p N s h t p o J l a I 0 J D t s U h N 2 2 3 d 3 Z K Q M l U c S z u 7 e / s H 5 O W j B x U l k l C X 3 h 5 W L 2 9 2 / J g z p 3 b 7 2 y q s r W 9 s j s D U b + J o U 7 j 1 f 2 H 6 i 0 H + I v 0 A s " E s < l a t e x i t h = a 1 _ b a s e 6 4 l I 4 c L 8 Q v 1 K O X j Q z E L 6 Q 1 R P F G F H W 3 M = " > A A A B 8 i F c b V B N T 8 J A R y 5 g i s a Y j P G Q d 0 o V O K T K S 7 P Q l u 3 4 V G j C s V J d x 6 V 1 l 2 K p G e F 0 M R K 7 M g u 5 7 M 3 F / u p o o O G l z I R J m v m C l A E K I m m e 0 h G T f 2 + k O F R q E p S h + G b u t y d U K a v J e z 2 N q R f i + t W m H R 8 r y p m g r a T a 0 0 4 s K Q 5 9 o A I F a 3 Y G t E q c n Q y g R 6 t f / u o N x 1 B I I 1 g b y e u F W 9 v U g B 6 r l / Z 5 a x u u S u 2 q V 7 u s e H f 9 c s W t u 3 O G M V D v / 1 E l W a J e A G T S Y M Y D w W L g e c h 6 r j R B h p V h N e N p q Z d q K j E 5 t L V l p A I 5 W v 3 y 2 O + Q k D S m w h C z 7 4 5 X i g 5 0 8 Z 1 v 3 F C 2 v r G 5 l Z x m 2 7 9 4 t X / 4 8 Z / Y r m u Q V s f D D z e u S x O p p w J 6 h t m O 1 m I R X E c c t o O x Q z t u 7 d / U D 4 8 e R 1 J q g j 1 S c I T Z y G K e / U W l 2 c j T M + I J n E I V P L i r b J b Z Y Y W J s Q m V A U j e 8 s u r x G / C t x 8 t O P n M M f y B / W k D X 3 S N x A = g s x e B C 3 w g M I Z n I z U 3 R z o v z r v E W H s C o L n 6 e y L D d F a T O L S d M T Y v K v z t W i p w T H W Q c U + d o j O r D F C j e Z p c m Q T N f k c D i K g x f G I J J o r U F z 6 N x P + 8 b m q i y Y B j Q q a G C r J g 1 P X R M J q m h k i w R H S l H J k b z 3 9 W 0 Q s u p C G 2 n w G a V 1 7 2 5 + J / X S 0 G K Q 1 K 3 + v I 6 8 R v m G 7 p 3 e 6 y 0 G n 4 l U 2 o M n 1 q C i W L V I k T G W G F i b E u D a H 8 Y k 1 R Q a Q j W V v c 8 N z F B h p 3 y h g e D c s W t u w u d P e L l p A I 5 2 o V h L U 6 d o Q u r D F E K L 1 v S o I X 6 e y c Q N y N Z q Z 9 q m m A w W S P a s 1 R i Q X k 3 R V A A A B 7 X i c b B " N S w M x E J 2 t > = 7 2 6 D v o / v T K k W o w x V L 7 x G N t X V Y 7 Q r u U b J p t Q P D Z k G S F s v R H a O + i V T 1 6 C R a h Q m r 7 R f y 4 F b x 4 G a j 8 D m J M 6 L 8 + 5 L r F s O T j 5 z C n / M g Q i D c 6 i C B 1 f g A j t o g w 8 E J v / L f _ e x i t s P a 1 b a a s e 6 4 = " 4 / t h l = 4 A < Q C N x Q = Y < / l a t e x i t > Affine semigroups (a geometric viewpoint) Fix an affine semigroup S = � n 1 , . . . , n k � ⊂ Z d ≥ 0 . � � a ∈ Z k Z( n ) = ≥ 0 : n = a 1 n 1 + · · · + a k n k A geometric viewpoint: non-negative integer solutions to linear equations. Example: S = � 6 , 9 , 20 � , n = 60. � � a ∈ Z k Z(60) = ≥ 0 : 60 = 6 a 1 + 9 a 2 + 20 a 3 Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 5 / 27

  4. Delta set Fix an affine semigroup S = � n 1 , . . . , n k � ⊂ Z d ≥ 0 . � � a ∈ Z k Z( n ) = ≥ 0 : n = a 1 n 1 + · · · + a k n k Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 6 / 27

  5. Delta set Fix an affine semigroup S = � n 1 , . . . , n k � ⊂ Z d ≥ 0 . � � a ∈ Z k Z( n ) = ≥ 0 : n = a 1 n 1 + · · · + a k n k a = ( a 1 , . . . , a k ) ∈ Z k | a | = a 1 + · · · + a k � ≥ 0 Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 6 / 27

  6. Delta set Fix an affine semigroup S = � n 1 , . . . , n k � ⊂ Z d ≥ 0 . � � a ∈ Z k Z( n ) = ≥ 0 : n = a 1 n 1 + · · · + a k n k a = ( a 1 , . . . , a k ) ∈ Z k | a | = a 1 + · · · + a k � ≥ 0 L( n ) = {| a | : a ∈ Z( n ) } = { ℓ 1 < · · · < ℓ r } Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 6 / 27

  7. Delta set Fix an affine semigroup S = � n 1 , . . . , n k � ⊂ Z d ≥ 0 . � � a ∈ Z k Z( n ) = ≥ 0 : n = a 1 n 1 + · · · + a k n k a = ( a 1 , . . . , a k ) ∈ Z k | a | = a 1 + · · · + a k � ≥ 0 L( n ) = {| a | : a ∈ Z( n ) } = { ℓ 1 < · · · < ℓ r } Definition The delta set of n ∈ S is ∆( n ) = { ℓ 2 − ℓ 1 , . . . , ℓ r − ℓ r − 1 } Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 6 / 27

  8. Delta set Fix an affine semigroup S = � n 1 , . . . , n k � ⊂ Z d ≥ 0 . � � a ∈ Z k Z( n ) = ≥ 0 : n = a 1 n 1 + · · · + a k n k a = ( a 1 , . . . , a k ) ∈ Z k | a | = a 1 + · · · + a k � ≥ 0 L( n ) = {| a | : a ∈ Z( n ) } = { ℓ 1 < · · · < ℓ r } Definition The delta set of n ∈ S is ∆( n ) = { ℓ 2 − ℓ 1 , . . . , ℓ r − ℓ r − 1 } Example S = � 6 , 9 , 20 � : Z(60) = { (10 , 0 , 0) , (7 , 2 , 0) , (4 , 4 , 0) , (1 , 6 , 0) , (0 , 0 , 3) } Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 6 / 27

  9. Delta set Fix an affine semigroup S = � n 1 , . . . , n k � ⊂ Z d ≥ 0 . � � a ∈ Z k Z( n ) = ≥ 0 : n = a 1 n 1 + · · · + a k n k a = ( a 1 , . . . , a k ) ∈ Z k | a | = a 1 + · · · + a k � ≥ 0 L( n ) = {| a | : a ∈ Z( n ) } = { ℓ 1 < · · · < ℓ r } Definition The delta set of n ∈ S is ∆( n ) = { ℓ 2 − ℓ 1 , . . . , ℓ r − ℓ r − 1 } Example S = � 6 , 9 , 20 � : Z(60) = { (10 , 0 , 0) , (7 , 2 , 0) , (4 , 4 , 0) , (1 , 6 , 0) , (0 , 0 , 3) } L(60) = { 3 , 7 , 8 , 9 , 10 } ∆(60) = { 1 , 4 } Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 6 / 27

  10. Delta set Fix an affine semigroup S = � n 1 , . . . , n k � ⊂ Z d ≥ 0 . � � a ∈ Z k Z( n ) = ≥ 0 : n = a 1 n 1 + · · · + a k n k a = ( a 1 , . . . , a k ) ∈ Z k | a | = a 1 + · · · + a k � ≥ 0 L( n ) = {| a | : a ∈ Z( n ) } = { ℓ 1 < · · · < ℓ r } Definition The delta set of n ∈ S is ∆( n ) = { ℓ 2 − ℓ 1 , . . . , ℓ r − ℓ r − 1 } Example S = � 6 , 9 , 20 � : Z(60) = { (10 , 0 , 0) , (7 , 2 , 0) , (4 , 4 , 0) , (1 , 6 , 0) , (0 , 0 , 3) } L(60) = { 3 , 7 , 8 , 9 , 10 } ∆(60) = { 1 , 4 } L(142) = { 10 , 11 , 12 , 14 , 15 , 16 , 17 , 18 , 19 } ∆(142) = { 1 , 2 } Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 6 / 27

  11. Delta set Fix an affine semigroup S = � n 1 , . . . , n k � ⊂ Z d ≥ 0 . � � a ∈ Z k Z( n ) = ≥ 0 : n = a 1 n 1 + · · · + a k n k a = ( a 1 , . . . , a k ) ∈ Z k | a | = a 1 + · · · + a k � ≥ 0 L( n ) = { ℓ 1 < · · · < ℓ r } ∆( n ) = { ℓ i − ℓ i − 1 } Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 7 / 27

  12. Delta set Fix an affine semigroup S = � n 1 , . . . , n k � ⊂ Z d ≥ 0 . � � a ∈ Z k Z( n ) = ≥ 0 : n = a 1 n 1 + · · · + a k n k a = ( a 1 , . . . , a k ) ∈ Z k | a | = a 1 + · · · + a k � ≥ 0 L( n ) = { ℓ 1 < · · · < ℓ r } ∆( n ) = { ℓ i − ℓ i − 1 } Facts for large n ∈ S min ∆( n ) is as small as possible for S Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 7 / 27

  13. Delta set Fix an affine semigroup S = � n 1 , . . . , n k � ⊂ Z d ≥ 0 . � � a ∈ Z k Z( n ) = ≥ 0 : n = a 1 n 1 + · · · + a k n k a = ( a 1 , . . . , a k ) ∈ Z k | a | = a 1 + · · · + a k � ≥ 0 L( n ) = { ℓ 1 < · · · < ℓ r } ∆( n ) = { ℓ i − ℓ i − 1 } Facts for large n ∈ S min ∆( n ) is as small as possible for S S = � 3 , 5 , 7 � : L(110) = { 16 , 18 , . . . , 34 , 36 } , ∆(110) = { 2 } Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 7 / 27

  14. Delta set Fix an affine semigroup S = � n 1 , . . . , n k � ⊂ Z d ≥ 0 . � � a ∈ Z k Z( n ) = ≥ 0 : n = a 1 n 1 + · · · + a k n k a = ( a 1 , . . . , a k ) ∈ Z k | a | = a 1 + · · · + a k � ≥ 0 L( n ) = { ℓ 1 < · · · < ℓ r } ∆( n ) = { ℓ i − ℓ i − 1 } Facts for large n ∈ S min ∆( n ) is as small as possible for S S = � 3 , 5 , 7 � : L(110) = { 16 , 18 , . . . , 34 , 36 } , ∆(110) = { 2 } L( n ) is an arithmetic sequence with a few values removed near the ends Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 7 / 27

  15. Delta set Fix an affine semigroup S = � n 1 , . . . , n k � ⊂ Z d ≥ 0 . � � a ∈ Z k Z( n ) = ≥ 0 : n = a 1 n 1 + · · · + a k n k a = ( a 1 , . . . , a k ) ∈ Z k | a | = a 1 + · · · + a k � ≥ 0 L( n ) = { ℓ 1 < · · · < ℓ r } ∆( n ) = { ℓ i − ℓ i − 1 } Facts for large n ∈ S min ∆( n ) is as small as possible for S S = � 3 , 5 , 7 � : L(110) = { 16 , 18 , . . . , 34 , 36 } , ∆(110) = { 2 } L( n ) is an arithmetic sequence with a few values removed near the ends S = � 42 , 86 , 245 , 285 , 365 , 463 � : L(3023) = { 7 , 9 , 11 , 12 , . . . , 46 , 47 , 58 , 62 , 64 } , ∆(3023) = { 1 , 2 , 4 , 9 } Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 7 / 27

  16. Delta set (a geometric viewpoint) Fix an affine semigroup S = � n 1 , . . . , n k � ⊂ Z d ≥ 0 . � � a ∈ Z k Z( n ) = ≥ 0 : n = a 1 n 1 + · · · + a k n k a = ( a 1 , . . . , a k ) ∈ Z k | a | = a 1 + · · · + a k � ≥ 0 L( n ) = { ℓ 1 < · · · < ℓ r } ∆( n ) = { ℓ i − ℓ i − 1 } Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 8 / 27

  17. Delta set (a geometric viewpoint) Fix an affine semigroup S = � n 1 , . . . , n k � ⊂ Z d ≥ 0 . � � a ∈ Z k Z( n ) = ≥ 0 : n = a 1 n 1 + · · · + a k n k a = ( a 1 , . . . , a k ) ∈ Z k | a | = a 1 + · · · + a k � ≥ 0 L( n ) = { ℓ 1 < · · · < ℓ r } ∆( n ) = { ℓ i − ℓ i − 1 } A geometric viewpoint: lattice width Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 8 / 27

  18. Delta set (a geometric viewpoint) Fix an affine semigroup S = � n 1 , . . . , n k � ⊂ Z d ≥ 0 . � � a ∈ Z k Z( n ) = ≥ 0 : n = a 1 n 1 + · · · + a k n k a = ( a 1 , . . . , a k ) ∈ Z k | a | = a 1 + · · · + a k � ≥ 0 L( n ) = { ℓ 1 < · · · < ℓ r } ∆( n ) = { ℓ i − ℓ i − 1 } A geometric viewpoint: lattice width Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 8 / 27

  19. Delta set (a geometric viewpoint) Fix an affine semigroup S = � n 1 , . . . , n k � ⊂ Z d ≥ 0 . � � a ∈ Z k Z( n ) = ≥ 0 : n = a 1 n 1 + · · · + a k n k a = ( a 1 , . . . , a k ) ∈ Z k | a | = a 1 + · · · + a k � ≥ 0 L( n ) = { ℓ 1 < · · · < ℓ r } ∆( n ) = { ℓ i − ℓ i − 1 } A geometric viewpoint: lattice width | a | = � a � 1 (the ℓ 1 -norm) Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 8 / 27

  20. Delta set (a geometric viewpoint) Fix an affine semigroup S = � n 1 , . . . , n k � ⊂ Z d ≥ 0 . � � a ∈ Z k Z( n ) = ≥ 0 : n = a 1 n 1 + · · · + a k n k a = ( a 1 , . . . , a k ) ∈ Z k | a | = a 1 + · · · + a k � ≥ 0 L( n ) = { ℓ 1 < · · · < ℓ r } ∆( n ) = { ℓ i − ℓ i − 1 } A geometric viewpoint: lattice width | a | = � a � 1 (the ℓ 1 -norm) min ∆( n ): min ℓ 1 width Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 8 / 27

  21. Delta set (a geometric viewpoint) Fix an affine semigroup S = � n 1 , . . . , n k � ⊂ Z d ≥ 0 . � � a ∈ Z k Z( n ) = ≥ 0 : n = a 1 n 1 + · · · + a k n k a = ( a 1 , . . . , a k ) ∈ Z k | a | = a 1 + · · · + a k � ≥ 0 L( n ) = { ℓ 1 < · · · < ℓ r } ∆( n ) = { ℓ i − ℓ i − 1 } A geometric viewpoint: lattice width | a | = � a � 1 (the ℓ 1 -norm) min ∆( n ): min ℓ 1 width extremal lengths near vertices Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 8 / 27

  22. Delta set of a semigroup Fix an affine semigroup S = � n 1 , . . . , n k � ⊂ Z d ≥ 0 . � � a ∈ Z k Z( n ) = ≥ 0 : n = a 1 n 1 + · · · + a k n k a = ( a 1 , . . . , a k ) ∈ Z k | a | = a 1 + · · · + a k � ≥ 0 L( n ) = { ℓ 1 < · · · < ℓ r } ∆( n ) = { ℓ i − ℓ i − 1 } Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 9 / 27

  23. Delta set of a semigroup Fix an affine semigroup S = � n 1 , . . . , n k � ⊂ Z d ≥ 0 . � � a ∈ Z k Z( n ) = ≥ 0 : n = a 1 n 1 + · · · + a k n k a = ( a 1 , . . . , a k ) ∈ Z k | a | = a 1 + · · · + a k � ≥ 0 L( n ) = { ℓ 1 < · · · < ℓ r } ∆( n ) = { ℓ i − ℓ i − 1 } Definition The delta set of S is the union ∆( S ) = � n ∈ S ∆( n ) Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 9 / 27

  24. Delta set of a semigroup Fix an affine semigroup S = � n 1 , . . . , n k � ⊂ Z d ≥ 0 . � � a ∈ Z k Z( n ) = ≥ 0 : n = a 1 n 1 + · · · + a k n k a = ( a 1 , . . . , a k ) ∈ Z k | a | = a 1 + · · · + a k � ≥ 0 L( n ) = { ℓ 1 < · · · < ℓ r } ∆( n ) = { ℓ i − ℓ i − 1 } Definition The delta set of S is the union ∆( S ) = � n ∈ S ∆( n ) Goal Given n 1 , . . . , n k as input, compute ∆( S ). Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 9 / 27

  25. Delta set of a semigroup Fix an affine semigroup S = � n 1 , . . . , n k � ⊂ Z d ≥ 0 . � � a ∈ Z k Z( n ) = ≥ 0 : n = a 1 n 1 + · · · + a k n k a = ( a 1 , . . . , a k ) ∈ Z k | a | = a 1 + · · · + a k � ≥ 0 L( n ) = { ℓ 1 < · · · < ℓ r } ∆( n ) = { ℓ i − ℓ i − 1 } Definition The delta set of S is the union ∆( S ) = � n ∈ S ∆( n ) Goal Given n 1 , . . . , n k as input, compute ∆( S ). The primary difficulty: this is an infinite union! Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 9 / 27

  26. Delta set of a semigroup Fix an affine semigroup S = � n 1 , . . . , n k � ⊂ Z d ≥ 0 . � � a ∈ Z k Z( n ) = ≥ 0 : n = a 1 n 1 + · · · + a k n k a = ( a 1 , . . . , a k ) ∈ Z k | a | = a 1 + · · · + a k � ≥ 0 L( n ) = { ℓ 1 < · · · < ℓ r } ∆( n ) = { ℓ i − ℓ i − 1 } Definition The delta set of S is the union ∆( S ) = � n ∈ S ∆( n ) Goal Given n 1 , . . . , n k as input, compute ∆( S ). The primary difficulty: this is an infinite union! Example S = � 17 , 33 , 53 , 71 � , ∆( S ) = { 2 , 4 , 6 } . Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 9 / 27

  27. Delta set of a semigroup Fix an affine semigroup S = � n 1 , . . . , n k � ⊂ Z d ≥ 0 . � � a ∈ Z k Z( n ) = ≥ 0 : n = a 1 n 1 + · · · + a k n k a = ( a 1 , . . . , a k ) ∈ Z k | a | = a 1 + · · · + a k � ≥ 0 L( n ) = { ℓ 1 < · · · < ℓ r } ∆( n ) = { ℓ i − ℓ i − 1 } Definition The delta set of S is the union ∆( S ) = � n ∈ S ∆( n ) Goal Given n 1 , . . . , n k as input, compute ∆( S ). The primary difficulty: this is an infinite union! Example S = � 17 , 33 , 53 , 71 � , ∆( S ) = { 2 , 4 , 6 } . 6 ∈ ∆(266) , ∆(283) , ∆(300). Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 9 / 27

  28. 4 3 2 1 20 40 60 80 100 120 140 The first breakthrough: numerical semigroups Fix a numerical semigroup S = � n 1 , . . . , n k � ⊂ Z ≥ 0 . Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 10 / 27

  29. 4 3 2 1 20 40 60 80 100 120 140 The first breakthrough: numerical semigroups Fix a numerical semigroup S = � n 1 , . . . , n k � ⊂ Z ≥ 0 . Theorem (Chapman–Hoyer–Kaplan, 2009) For n ≥ 2 kn 2 n 2 k , ∆( n ) = ∆( n + n 1 n k ) . Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 10 / 27

  30. The first breakthrough: numerical semigroups Fix a numerical semigroup S = � n 1 , . . . , n k � ⊂ Z ≥ 0 . Theorem (Chapman–Hoyer–Kaplan, 2009) For n ≥ 2 kn 2 n 2 k , ∆( n ) = ∆( n + n 1 n k ) . Example: S = � 6 , 9 , 20 � : 2 kn 2 n 2 k = 21600 4 3 2 1 20 40 60 80 100 120 140 ( n , d ) d ∈ ∆( n ) � Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 10 / 27

  31. The first breakthrough: numerical semigroups Fix a numerical semigroup S = � n 1 , . . . , n k � ⊂ Z ≥ 0 . Theorem (Chapman–Hoyer–Kaplan, 2009) For n ≥ 2 kn 2 n 2 k , ∆( n ) = ∆( n + n 1 n k ) . Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 11 / 27

  32. The first breakthrough: numerical semigroups Fix a numerical semigroup S = � n 1 , . . . , n k � ⊂ Z ≥ 0 . Theorem (Chapman–Hoyer–Kaplan, 2009) For n ≥ 2 kn 2 n 2 k , ∆( n ) = ∆( n + n 1 n k ) . For n ∈ S with 0 ≤ n ≤ 2 kn 2 n 2 k + n 1 n k , Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 11 / 27

  33. The first breakthrough: numerical semigroups Fix a numerical semigroup S = � n 1 , . . . , n k � ⊂ Z ≥ 0 . Theorem (Chapman–Hoyer–Kaplan, 2009) For n ≥ 2 kn 2 n 2 k , ∆( n ) = ∆( n + n 1 n k ) . For n ∈ S with 0 ≤ n ≤ 2 kn 2 n 2 k + n 1 n k , compute: Z( n ) = { a ∈ Z k ≥ 0 : n = a 1 n 1 + · · · + a k n k } Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 11 / 27

  34. The first breakthrough: numerical semigroups Fix a numerical semigroup S = � n 1 , . . . , n k � ⊂ Z ≥ 0 . Theorem (Chapman–Hoyer–Kaplan, 2009) For n ≥ 2 kn 2 n 2 k , ∆( n ) = ∆( n + n 1 n k ) . For n ∈ S with 0 ≤ n ≤ 2 kn 2 n 2 k + n 1 n k , compute: Z( n ) = { a ∈ Z k ≥ 0 : n = a 1 n 1 + · · · + a k n k } Z( n ) � L( n ) = { a 1 + · · · + a k : a ∈ Z( n ) } Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 11 / 27

  35. The first breakthrough: numerical semigroups Fix a numerical semigroup S = � n 1 , . . . , n k � ⊂ Z ≥ 0 . Theorem (Chapman–Hoyer–Kaplan, 2009) For n ≥ 2 kn 2 n 2 k , ∆( n ) = ∆( n + n 1 n k ) . For n ∈ S with 0 ≤ n ≤ 2 kn 2 n 2 k + n 1 n k , compute: Z( n ) = { a ∈ Z k ≥ 0 : n = a 1 n 1 + · · · + a k n k } Z( n ) � L( n ) = { a 1 + · · · + a k : a ∈ Z( n ) } L( n ) = { ℓ 1 < . . . < ℓ r } � ∆( n ) = { ℓ i − ℓ i − 1 } Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 11 / 27

  36. The first breakthrough: numerical semigroups Fix a numerical semigroup S = � n 1 , . . . , n k � ⊂ Z ≥ 0 . Theorem (Chapman–Hoyer–Kaplan, 2009) For n ≥ 2 kn 2 n 2 k , ∆( n ) = ∆( n + n 1 n k ) . For n ∈ S with 0 ≤ n ≤ 2 kn 2 n 2 k + n 1 n k , compute: Z( n ) = { a ∈ Z k ≥ 0 : n = a 1 n 1 + · · · + a k n k } Z( n ) � L( n ) = { a 1 + · · · + a k : a ∈ Z( n ) } L( n ) = { ℓ 1 < . . . < ℓ r } � ∆( n ) = { ℓ i − ℓ i − 1 } Compute ∆( S ) = � n ∆( n ). Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 11 / 27

  37. The first breakthrough: numerical semigroups Fix a numerical semigroup S = � n 1 , . . . , n k � ⊂ Z ≥ 0 . Theorem (Chapman–Hoyer–Kaplan, 2009) For n ≥ 2 kn 2 n 2 k , ∆( n ) = ∆( n + n 1 n k ) . For n ∈ S with 0 ≤ n ≤ 2 kn 2 n 2 k + n 1 n k , compute: → Z( n ) = { a ∈ Z k ≥ 0 : n = a 1 n 1 + · · · + a k n k } ← Z( n ) � L( n ) = { a 1 + · · · + a k : a ∈ Z( n ) } L( n ) = { ℓ 1 < . . . < ℓ r } � ∆( n ) = { ℓ i − ℓ i − 1 } Compute ∆( S ) = � n ∆( n ). Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 11 / 27

  38. The first breakthrough: numerical semigroups Fix a numerical semigroup S = � n 1 , . . . , n k � ⊂ Z ≥ 0 . Theorem (Chapman–Hoyer–Kaplan, 2009) For n ≥ 2 kn 2 n 2 k , ∆( n ) = ∆( n + n 1 n k ) . For n ∈ S with 0 ≤ n ≤ 2 kn 2 n 2 k + n 1 n k , compute: → Z( n ) = { a ∈ Z k ≥ 0 : n = a 1 n 1 + · · · + a k n k } ← Z( n ) � L( n ) = { a 1 + · · · + a k : a ∈ Z( n ) } L( n ) = { ℓ 1 < . . . < ℓ r } � ∆( n ) = { ℓ i − ℓ i − 1 } Compute ∆( S ) = � n ∆( n ). | Z( n ) | ≈ n k − 1 Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 11 / 27

  39. An improvement: the first usable algorithm Fix a numerical semigroup S = � n 1 , . . . , n k � ⊂ Z ≥ 0 . Theorem (Chapman–Hoyer–Kaplan, 2009) For n ≥ 2 kn 2 n 2 k , ∆( n ) = ∆( n + n 1 n k ) . Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 12 / 27

  40. An improvement: the first usable algorithm Fix a numerical semigroup S = � n 1 , . . . , n k � ⊂ Z ≥ 0 . Theorem (Garc´ ıa-Garc´ ıa–Moreno-Fr´ ıas–Vigneron-Tenorio, 2014) For n ≥ N S , ∆( n ) = ∆( n + lcm( n 1 , n k )) . Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 12 / 27

  41. An improvement: the first usable algorithm Fix a numerical semigroup S = � n 1 , . . . , n k � ⊂ Z ≥ 0 . Theorem (Garc´ ıa-Garc´ ıa–Moreno-Fr´ ıas–Vigneron-Tenorio, 2014) For n ≥ N S , ∆( n ) = ∆( n + lcm( n 1 , n k )) . Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 12 / 27

  42. An improvement: the first usable algorithm Fix a numerical semigroup S = � n 1 , . . . , n k � ⊂ Z ≥ 0 . Theorem (Garc´ ıa-Garc´ ıa–Moreno-Fr´ ıas–Vigneron-Tenorio, 2014) For n ≥ N S , ∆( n ) = ∆( n + lcm( n 1 , n k )) . S = � 6 , 9 , 20 � : 2 kn 2 n 2 k = 21600, N S = 144, actual = 91 Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 12 / 27

  43. An improvement: the first usable algorithm Fix a numerical semigroup S = � n 1 , . . . , n k � ⊂ Z ≥ 0 . Theorem (Garc´ ıa-Garc´ ıa–Moreno-Fr´ ıas–Vigneron-Tenorio, 2014) For n ≥ N S , ∆( n ) = ∆( n + lcm( n 1 , n k )) . S = � 6 , 9 , 20 � : 2 kn 2 n 2 k = 21600, N S = 144, actual = 91 2 kn 2 n 2 S N S ∆( S ) Runtime k � 7 , 15 , 17 , 18 , 20 � 60000 1935 { 1 , 2 , 3 } 1m 28s � 11 , 53 , 73 , 87 � 3209256 14381 { 2 , 4 , 6 , 8 , 10 , 22 } 0m 49s � 31 , 73 , 77 , 87 , 91 � 6045130 31364 { 2 , 4 , 6 } 400m 12s 9 · 10 7 � 100 , 121 , 142 , 163 , 284 � 24850 ——— ——— � 1001 , 1211 , 1421 , 1631 , 2841 � 6 · 10 15 2063141 ——— ——— Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 12 / 27

  44. An improvement: the first usable algorithm Fix a numerical semigroup S = � n 1 , . . . , n k � ⊂ Z ≥ 0 . Theorem (Garc´ ıa-Garc´ ıa–Moreno-Fr´ ıas–Vigneron-Tenorio, 2014) For n ≥ N S , ∆( n ) = ∆( n + lcm( n 1 , n k )) . S = � 6 , 9 , 20 � : 2 kn 2 n 2 k = 21600, N S = 144, actual = 91 2 kn 2 n 2 S N S ∆( S ) Runtime k � 7 , 15 , 17 , 18 , 20 � 60000 1935 { 1 , 2 , 3 } 1m 28s � 11 , 53 , 73 , 87 � 3209256 14381 { 2 , 4 , 6 , 8 , 10 , 22 } 0m 49s � 31 , 73 , 77 , 87 , 91 � 6045130 31364 { 2 , 4 , 6 } 400m 12s 9 · 10 7 � 100 , 121 , 142 , 163 , 284 � 24850 ——— ——— � 1001 , 1211 , 1421 , 1631 , 2841 � 6 · 10 15 2063141 ——— ——— GAP Numerical Semigroups Package, available at http://www.gap-system.org/Packages/numericalsgps.html . Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 12 / 27

  45. An improvement: the first usable algorithm Fix a numerical semigroup S = � n 1 , . . . , n k � ⊂ Z ≥ 0 . Theorem (Garc´ ıa-Garc´ ıa–Moreno-Fr´ ıas–Vigneron-Tenorio, 2014) For n ≥ N S , ∆( n ) = ∆( n + lcm( n 1 , n k )) . Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 13 / 27

  46. An improvement: the first usable algorithm Fix a numerical semigroup S = � n 1 , . . . , n k � ⊂ Z ≥ 0 . Theorem (Garc´ ıa-Garc´ ıa–Moreno-Fr´ ıas–Vigneron-Tenorio, 2014) For n ≥ N S , ∆( n ) = ∆( n + lcm( n 1 , n k )) . For n ∈ S with 0 ≤ n ≤ 2 kn 2 n 2 k + n 1 n k , compute: Z( n ) = { a ∈ Z k ≥ 0 : n = a 1 n 1 + · · · + a k n k } Z( n ) � L( n ) = { a 1 + · · · + a k : a ∈ Z( n ) } L( n ) = { ℓ 1 < . . . < ℓ r } � ∆( n ) = { ℓ i − ℓ i − 1 } Compute ∆( S ) = � n ∆( n ). Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 13 / 27

  47. An improvement: the first usable algorithm Fix a numerical semigroup S = � n 1 , . . . , n k � ⊂ Z ≥ 0 . Theorem (Garc´ ıa-Garc´ ıa–Moreno-Fr´ ıas–Vigneron-Tenorio, 2014) For n ≥ N S , ∆( n ) = ∆( n + lcm( n 1 , n k )) . For n ∈ S with 0 ≤ n ≤ 2 kn 2 n 2 k + n 1 n k , compute: → Z( n ) = { a ∈ Z k ≥ 0 : n = a 1 n 1 + · · · + a k n k } ← Z( n ) � L( n ) = { a 1 + · · · + a k : a ∈ Z( n ) } L( n ) = { ℓ 1 < . . . < ℓ r } � ∆( n ) = { ℓ i − ℓ i − 1 } Compute ∆( S ) = � n ∆( n ). Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 13 / 27

  48. A faster solution: dynamic programming Fix n ∈ S = � n 1 , . . . , n k � . Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 14 / 27

  49. A faster solution: dynamic programming Fix n ∈ S = � n 1 , . . . , n k � . For each i ≤ k , Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 14 / 27

  50. A faster solution: dynamic programming Fix n ∈ S = � n 1 , . . . , n k � . For each i ≤ k , φ i : Z( n − n i ) − → Z( n ) a �− → a + e i Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 14 / 27

  51. A faster solution: dynamic programming Fix n ∈ S = � n 1 , . . . , n k � . For each i ≤ k , φ i : Z( n − n i ) − → Z( n ) a �− → a + e i S = � 6 , 9 , 20 � : Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 14 / 27

  52. 7 U h m P A K H j O p o e a m O E U c o g h 7 i E e G z 0 I N 9 J O W f j X / J u Z 0 z l p Z D o P J U D K c I x N / q K l F G o N C p S G 5 k J a V w O V k L 0 f R r 8 s X v c < P a 5 j h S 9 5 t o D c M S N s N p 9 R j a 9 q Y F O N q M Q i h Y Q 9 + / W d D e I h w E A h 2 G H C 1 5 M Z I K j J I O 5 1 R W X p e I X t b Z C y G A / 6 D s / Q c O s e a + j Y q f 3 r f B r e O L l m b k i x X 0 p Y y A A p S z Q O C H H T + P y o g m F H B M C a b E x 2 h T r V R 6 y L H / Z Y S q C i u J R E D L j I y a m Y A Q 2 B H z I N J t 6 X Q 8 L D L Z F x I g T L D V b c i X 9 D k A n 8 Z 2 Q H 0 m 5 0 h C K d m h E G E l 3 E S M O d H V H G B A 9 x 6 e s a b _ 1 a h s t i e = t a l < / l a t e x i t > 4 " A J > " = 8 N 0 I X C T R l Q l y h 3 R O 8 j C H O 6 e H o A B u 6 N d c g H X S i Y H n T X j C 2 e G K s y j d Q J v E N F r x J L 5 R k 1 K 4 M m r g H B o i t T O N u h K W p I 1 / v z c a M X h 8 p 7 + b z x J n a m E 4 a L W G j 9 X n F / / W M i G S O q L i W P c f F u z + 7 t x G f l H p v 2 q r s 3 u y b t b L F A faster solution: dynamic programming Fix n ∈ S = � n 1 , . . . , n k � . For each i ≤ k , φ i : Z( n − n i ) − → Z( n ) a �− → a + e i S = � 6 , 9 , 20 � : Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 14 / 27

  53. f t t a l < > t i x e a x l / < = o U k r j e i P 6 1 v n Q m s " = 4 e t s a b _ 1 a h s 6 f S w z J E g A o 1 w A p A u A g D X Z M A 3 / K i 0 1 H C z R 7 V y Z z b / x W 9 K W 9 T a 9 s I P Y 7 A 2 v g x K O 8 Z K P C s S Z s Q t I V y 9 S P e K + w F G + 3 o a Y F Z W 6 W z N Y b B 6 v T > " = U v Y X 8 A e A P Z c y U K a B M A A h x q / q 1 r W 3 M E M B w S N B V b c i n 8 R M X w M q r R 7 h M S m 0 B Y 1 L C N 9 p I 0 A V S B p f q G R 4 8 K 9 k W M M 6 E i 6 p p S 6 8 E I x B k S m 4 l B 6 U 2 k l k F v v T X 7 p B a 0 E N p 2 p j 6 V 6 4 C / B K O S C x b X J e 7 8 y r q m C t M t E C I Y E y Z K C Y G e S z Y p I X q q 0 v U z u N n N w m i V r F T 8 + r F S J G k P W d n 7 v J v V y X p N 5 M A P p U B t 7 Y 7 0 I A r R 7 Q k M 3 o Q z D S q s G 1 E J X e R S x / / 8 C P o E m B G X 2 O G w k y J R U j P t S t 5 A p o 6 Y m y O e L w U o t 4 E Q P c Y 6 + u 6 X A Y x t V Q j I W G W f x g 8 x J E Y b K 4 V e / v 4 m V m b x U Y k d A P K T G y b G + R 5 8 5 J F 0 q l c / X e F f e A N j + X g G < > t i x e t a l / = f = w W P C 3 c A 4 P r p g f R O r S b e Y 3 U Z 1 d X r j T 8 6 r r x F H T F G O i a W M a 3 E E l b L G Z V c g + Z x / P S 5 h Y p D D 1 F 6 F w l N z r Z p G l j G R O Y R X P h 7 9 3 M 3 e I T e g E 1 p 0 s k 3 T e j 4 R y F Z i p Z 3 / A G H Y N 0 7 Z L m f S C 5 R H d 4 B 7 v 3 S 3 x D 7 t 5 G b s l y 2 k q 4 u J D 8 S s k n x k q G q w j R W q y H V z O Q o Y N C T p d G u O S 2 T C h n a + V 6 Z J D P W E o C s n d e r U A G U f k i 6 M y 9 J Y a l d 7 A I U U x J 3 O x b k G p u Q 5 G 0 y R m q r P H 5 r 8 s X v c 7 P a j f Y d A 6 5 R k 1 K R L M S Q 9 + 9 S 0 h C p G N 5 k J a V w O V k 4 m h n d c g H X S i Y H T 2 X j N C e G K s y r x r u g H B o L i T O N h t K W p I 1 / v z c Y i d K U D K c I x N / q l P o 9 E N h m P A K J D j j H B M f W o / W f X O / J u Z 0 z l p Z H O Q R D c M S N s N p 9 j t 5 a q Y F O N q M o 9 p g o e a m U O U c o h G 7 i E e G z 0 I F J j Q m c F x I g T L D V b i 2 X 9 B A A A > " = L D N B d H V H G h k Z D H L z I N J t 6 X Q 8 8 0 M h 4 6 e s a b _ 1 a s " t i x e t a l < = y I 3 X C T R l Q J l h R A O 8 j C H O 6 e H o O S J b p v 2 q r s 3 u y t f b L l O L S 8 p 7 H L b W v E N F a J M q i P G c f F u z + 7 t x + z E h 8 Z 2 Q H 0 m 5 0 C 9 K d n m E G E l 3 B u x G J n a m E 4 h a W j X 9 X n F / / W M i G F b g 4 8 2 8 4 + 7 6 x 1 C w N O s / T E y o 2 s y p T b r 0 Z S s X 9 0 z w u P 3 k T m E P U O O b L z I N J t 6 X Q 8 D B 2 L F x o g T L D H D 0 o R j D U m + I I 8 I Z i x l b J 6 S j B k 9 e b r U w C V p + x t m H 3 + e v t T 8 4 Q K d o 4 A k q H w v M k 0 2 r S R 8 F 8 Q A f T U k 0 V a 5 v 4 9 2 d n t 3 h S b K / N W f t V W B 4 0 c a a m p Q z U 5 V o W j K 7 h Q J R L J x V I c e J I O 5 1 R W X p l K t m b x 2 h T r V j I 6 w O L e X i I e I h E M A h 2 G H C 1 5 D R y r S x X 0 p Y y A A p z C Q k O H H T + P y i C L J H / Z E Y q C i u R a E D L j I y a m S e Z B m M J a a D u C z w a F 8 " = 4 f e s a b U O 1 0 X 9 B A A A > " = U d s h j V i 0 w D I _ 6 a O G A / 6 h s / Q c b C s a + j Y q f 3 r y D Z < s t i F e t a l x > a t Q / l < t e x i A faster solution: dynamic programming Fix n ∈ S = � n 1 , . . . , n k � . For each i ≤ k , φ i : Z( n − n i ) − → Z( n ) a �− → a + e i S = � 6 , 9 , 20 � : Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 14 / 27

  54. R n 4 q b p a 3 t d W 0 9 e / + g p N f J 0 Z 4 5 f s y Z o t 7 z b R V W V a E u 2 e W F I c + p 1 a / f D 3 z 2 4 S N E x t o k E Y 9 k 8 P e K c i Z o U z 5 P U L N y U p i i 6 b t l x W s A 9 s Q o 5 p S s N A F L 2 r B 1 p f U Z d u Y l 3 T n 9 x 5 9 8 4 b i P Q 1 g M D h 1 j M M J + 3 Q y S T T C J Q S + h 9 u X 9 K D 6 5 a V Z 6 i k M x c o A B Z E 0 S h 2 j O i 3 1 E k V T C M Z 4 S L u G T i x p n 9 e N 9 H B Z m c y E S e a C 4 R U q q b 8 3 U h w N P Q l 9 M 5 m l X w I h q X Y j 1 S A b v a 1 M 6 d 0 7 5 E 6 d R a J O z 2 J q f b i o W A B I 1 g d q 1 p Q i o 0 4 V i r F u v E 2 k u x J h p y O B r R M 3 J U B I U e j b 3 / 1 L V I 4 Y U x m b V m v d / e V 4 K Y c k A P u V t x Y A X 6 + P J j E b G T K P R Q w O Q E 4 t o U L G e y t m Y 6 o j U J B y k w G O 2 X S x m E o P C 8 / / 6 I A R P z V H y q W j W w G J q k x n o 7 s A 0 G 5 Q u p k b I x O 3 J x U U k S W G d p T C N u / x u x 8 g x f W G G O 8 Z D O q Q T D J 6 S V + a n h C 2 Y p 5 b h t e x i t s a l 1 _ b a s e 6 a < = < 3 C P W w = = / > l a t e x i t 4 " A > 5 H I K A = " A r A A B 9 X i c Y R H W B j d o I I v 9 z G J V e 5 s y v c 4 t E S r O R x 1 F Z e + g c V Z G L b Y l 6 S y Y b g r r 8 3 T j r X d Z f U b E P J X c + l q 0 F 5 F 8 5 R X / g f e f T G 3 a M W a i O F e H p G r + j N A j / m 6 O q Q T D J Z V 8 + a n h C 2 Y D S O j z V H y q W R w s G J q k x n k S u o + t x Y A X 6 u J 6 j E b G T K P V Q G G d p T C N u / x I x 8 g x f W G W P W d R M 3 9 7 h P X q Y j 4 E a Y J 9 3 e M 3 Y h 5 G w R I k T s 0 p 1 E g e y 6 7 b G 5 Q u p k A x y O 3 J x U U I 0 R i e k U o G A U r d 2 n s C l d J z a A k D F a M W a i O G H T p G r + j N A 3 E f Z r O R x 1 F E + l g c V Z G L b e F b / 6 P W w = = < l c a t e x i t > 2 A e J X c + l q 0 F 5 4 8 5 R X / g f P S e Y m w G O 2 X B S E y o P C 8 / / x k J G v U x m b V m 4 / R e V 4 K Y c P P U j Y T Y b g r r 6 8 j S r X d Z f U 3 y t O L Q E 4 t o U w e 5 y t m Y 6 o p A p D C X 5 z i H 8 g f 5 V A 6 R c k U c j L < 1 w D K / w Z j Z f L 9 a 7 9 T E = / J " b a s e 6 4 = t 1 2 v n x A 8 1 _ a l < a t e x i t > l h a t e x i t s D E s M K Z r I i M s R J E m 6 J K p g p I 3 k Q c 6 Q j N K A I D J i n R f G R 8 m c w B M d Q A R u o o A 4 3 0 I A p O c k v L p F W r u 7 y V v T 0 r 1 6 / 9 / 1 3 0 N Y H A 4 / Z Z p i Z F y R S 7 L C K S 3 + G F w + e m P X X e P P f G D Y Z e O T j l G p r H z N l F S 6 F 5 d k t 2 y l s b G 5 7 4 x R 3 S 3 v 7 B o F T B B 8 n i c b V N A S w M x E M 3 A A r N F J R r r V a D > Z P E + H 0 = " W 1 Z y g v 2 A 7 V K a K b Y N z W 6 W x O q t / q h 6 9 B I Q 8 s Z S s C P Z Y y F q L C q Y E Z / H y u 6 R V r T h 2 i J b S 0 X x i C C a m R a y I j L D E x m Y I G 2 h A E w h e C I Z X e L O e H 1 t 5 l e p X W R 1 O 5 I J j K I M D p y B q h N E 9 o l K / P N x I c K D U m A P U 7 h g o c U O m K a e o p O j H J D A H m g o y P + T H H O k Q z S p A F B O J Z p l z 0 Z u / M X j f W / o W b r f E Q x F L 2 D L 8 X g 6 t J N I z H I T D A U 0 = " > A A B L 9 X i c b V D B Z h T O p O 2 o y E / R s O N G 4 1 x 0 j k x B j S 6 J b l i D I o 8 I I + m U s j r a C Z F Q < / l t G e x i t > < l y A t s 3 f q Y j + a b / O c Q / s D 6 a e V U C u D a a J M F w O d I D w 0 i z m x _ i t s h a 1 b a a s e 6 4 = " 8 i e 7 0 E m n d K C h 5 E m 0 H Q 2 Z 8 G l 9 G z H B D Z k h H 3 V H d O M S E B u N 8 J x z b + 7 p S a L O l L b t b n m X n G i M W / / F X E 9 j G W a h 4 I J u 6 = " y A o H e O 6 H C j 8 O R 3 4 e l t < l a t e x i s s h a 1 _ b a h J t F V D L T g I x L c 2 D L 8 Q X 6 b i Q N l R T C X I 0 8 X = " > A A A B 9 y 3 G w R f L N k V O V 8 a J k 5 G S p r s h d K 1 k R 5 6 A Y X j 5 a P 7 c v C 0 M o N s N S M c D t 9 9 G J F I 0 z p R S Q 9 + 9 Q Y h i M j q N O F Y q a 5 4 m s E i q M J a F N v P J Q d j y s K W c e L r q 2 v p H f G f x t 7 + z u F G C r N 1 I p W K h u O v T i L o B H g / z N S j X T n H Y i X c H g c d r 2 x t 6 C + e a K U y c Z P T M A 8 X Y v U = B v > " b a s e 6 4 = s I m Q n v 1 s S " A 1 I q / q h 6 9 B t r Q s Z S s C P 1 W A V A B 8 n i c b B 3 N S w M x E M _ a Y a J z / A K b 9 T g 9 W K 9 W x / E A 0 D P R 3 4 M Z X g o A u p w A w 1 z Z h l t e x i t > < a l t e x i t s a / y i V 7 R z C H 1 f < P 6 j r k U o = Z 8 y R D p Y h 5 G w I 1 3 k s 0 p 1 E D F e G H 5 e O T j l p 6 Z r z N l F S g T 4 r i k U o G A U e M d n s C l f d 6 y e P Y 3 M 3 9 7 h X 9 R q j 4 E a Y J d B O w Y o S 3 + G F + Z K e P X X e P F W f V K x g v 2 A 7 K 6 y a b Y N z W P m 7 5 k 2 y l s b G t C 7 x R 3 S 3 v D G L 4 Z 7 0 N Y H A / S 3 Z p i Z F y R M A q Q 3 o S U T f A 8 U F 8 R r A 2 0 d w M + Q 4 8 T t v e H C r m t x + p V k v k B 6 B l 4 m S k B x k a q e J X b U 2 w r H q k f H R f p l 7 X T v v F k K 4 C 9 X s S Z 0 r b b 0 e V W V t f W 9 T / U 8 2 8 s w y w P z E m T k 3 P u N K 0 5 h 7 K j o c V U J z Q p m a a 0 Q R b 9 h a 3 t n d 2 4 L v 5 B S 4 W x J x / S A 7 M k Q 7 R r I Q 0 Y J I S z S 3 z G 7 7 n d W O t X o D J E 1 G s q S e Y J N 8 T F r V i m X r n N u z U v 0 + F C E K Z y Y r I C t w M t C m q Y E p v P v w 9 N C L 1 Y 0 m I S M V 7 R r q p 0 A 6 K B C E 4 6 V j 8 p 2 p N 0 E S M h B p p 7 I 8 V B U P q A M 5 N p y k f G G E W 6 R p p 6 i S 6 9 M 8 K 4 B k M A faster solution: dynamic programming Fix n ∈ S = � n 1 , . . . , n k � . For each i ≤ k , φ i : Z( n − n i ) − → Z( n ) a �− → a + e i S = � 6 , 9 , 20 � : Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 14 / 27

  55. v J Q 6 V t x Y A X 6 u + j W E b G T K P A d k Y U I G m p a n h C 2 Y S O u G d T W C N u / G x x 8 g x f x b V o / / x U G j O Q E 4 t U C w L e y t m Y 6 o p A 8 P V P m 4 v / e V 4 K Y c P R o J y k w G O 2 X B S m E + 6 t M X R q j 4 E a Y J 9 y 6 h i k U o G A U r e d n P 7 C k D D p Y h 5 G w R I 3 s 9 0 p 1 E g e T e Y 3 M 3 s l Z x H y q W R j w G J q k n z k s S 8 D O q Q T D J V P d p J z a 2 R y 0 G 5 Q u k o A b x O 3 J x U U I 7 W 5 S F 9 1 r 6 0 = " > A A A B X m i c b V D L T g I x F G b 2 A e 6 4 = " i N d x g B 2 3 G B 6 W e P D 9 u c w L D a Q m n d K C h 0 5 m 0 H 2 G Z 8 B 9 u X G i M W / E E L D 8 Q X 6 t J N I z H B Z l k B E 3 V H d O M S E 3 s b y a g c V Z G L b l E T 3 M Z W a i O G F H p G r + + E N d Y b g r r 6 8 T j r X Z F f U 3 Y e b S r O R x 1 j A _ < = < / l a t e x i t > l w a t e x i t s h a 1 = W e 5 f F e X c + l q 0 F J 8 P 5 R X / g f P 4 A c 2 6 1 6 F K D J i n R f G I I J p Z k r I i M s M R E m 6 J A K p e e N 9 H B p Z c y E S a N C j I / F C Q c 6 Q j K g n m A R c u o A 4 3 0 I A E d J D w D K / w Z j 1 Z Q M R 7 3 8 c v L p F W r u k V B v T 0 r 1 6 / y O o p w 9 4 9 u F J Q i o 0 4 V i p r v B E 2 k u x 1 I x w O i h 1 1 B M 6 d 0 7 5 d d q p O r / R M 3 J y U I U e j b 3 3 E m w 0 T 2 i U q b 8 3 U h q Z N Q l 9 M 5 m l X P R E B k h V j T M Z 4 S L u G C x A S 5 a V Z 6 i k 6 M c o L a S F W 6 W Z F Y o S 3 + G w N + K e P X X e P P f m z Y Z Y B I t Q s Z S s C P Z 8 b O K x g v 2 A 7 V K y a L 7 6 e R 3 S 3 v 7 B 4 d H 5 O 7 T j l G p Z r z N l F x t 0 F N Y H A 4 / 3 Z p i Z y 5 R S G C D k 2 y l s b G 9 h 7 i e x i t > < l a t e x t a s h a 1 _ b a s e 6 t l = 8 9 T E f L V j 5 z i H g / f X 5 A 6 R c k U c = < 4 " q N A A A B 8 n i c b V B S " w M x E M 3 W r 1 q / > = t F 2 v n x A 8 1 9 s / T J 0 R r r V a N D Z P E + H / n q h E g e T e Y 3 M 3 9 7 P p X R q j 4 E a Y J 9 y 1 0 6 1 G p Z r z N l F S 6 F D s D p Y h 5 G w R I 3 k M i j z O 3 J x U U I 7 W o P V b H y q W R j w G J q k x A k l U o G A U r e d n s C d k J j d T c y 0 G 5 Q u p l T n z v 2 A 7 V K y a b Y N W x 6 W Z F Y o S 3 + G F g K + 9 E M 3 W r 1 q / q h 6 B O I t Q s Z S s C P Z Y 8 w K O x D k 2 y l s b G 5 t 7 R G 3 S 3 v 7 B 4 d H 5 e C S e 0 P X X e P P f m L Z 7 N R Y H A 4 / 3 Z p i Z F y x k M Z Y e b S r O R x 1 F E + U g c V Z G L b l E T 3 3 f M y y t m Y 6 o p A 5 t S Y Z b g r r 6 8 T j r X d a W L w / g f P 4 A c 2 y P W = R = < / l a t e x i t > X 5 a A i O G F H p G r + j N e 8 f F e X c + l q 0 F J 5 e w s I / G x x 8 g x f W G W Q N 6 V t x Y A X 6 u + J u C E V S 8 D O q Q T D J Z 6 + T a n h C 2 Y S O u G d p j b U 8 G O 2 X B S m E o P C / k / x U G j O Q E 4 t o w y G V T K P A d k Y U x m b m J 4 v / e V 4 K Y c P P R x w 9 e y c j J c j Q 6 B e / o t O Q x A E V m n C s V E I e c R 5 6 A d Y j 5 a P 7 r Q V 2 e d o v l u y K n N x 1 P K T N P U U n R h l g x q Q m i c 0 S t X f G w H O I e + 0 m W G p G O J 0 W r U G i E S Z j P K R d Q w k K O t s r q 2 v p H f L G x 7 u + z u F f c P W i q M 3 y a x j G W a h 4 E m a n J z b b + 7 p 8 S L O l L b t J F 4 u t c z v / 1 I p W K h N 2 O T i L o B H g r m M x r N C E v J Q d j y s K G e N d j X T n H Y i S X H g c k l S t A G u / Z F O < / l a e 6 x i t > < l a t e x i / D r e I Z X e L O e r B f 3 s f q Y j + a s b O c Q / t s h > D a K v I s 9 L 0 = " A 3 A A B 8 n i c b V B N m f h A a 1 _ b a s e 6 4 = " 2 V J j 5 i 4 H O s n V Q L I w J W Z H / J j j n S I Z h g Q A Z O U a D 4 x B B P W T T / o E n p l M U y 5 6 M E i / r x t r / 8 J N m I h J F E j l e p X W R 1 5 O I J K y I M D 5 1 C H G 2 h A e t Z O E R l h i o k 1 R B V C 4 s / j l Z d K q V h y 7 1 X b B 6 t J N I z H B D Z k j Q S 6 J b l x i I o 8 I X 8 + c 0 = " > A A A B 9 X i b L V D L T g I x F L 2 D I m s z y w U P E m T k 3 P u T s 0 9 X s S Z 0 r b 9 b w 8 U T D j R 0 O p O 2 o y E / 2 s O N C 4 1 x 6 7 + 4 8 U h V b B f r 3 f q Y j + a s O e c Q / s D 6 / A G y C r O F G I J j K I M D 5 1 C H 2 L h A E w h I e I Z X e Z Q j a = " 8 a m w z C u D a J 6 M U F O d I D w 0 i V 4 e < a / l a t e x i t > < l t s e x i t s h a 1 _ b a e W 5 1 0 E S 8 0 I p 9 N C L Y p 0 w m S M h 7 R r q M N 2 B x S k B B k a / e J X b C p S O K B C E 4 6 V 6 j A V 4 7 A M 5 N p y k V v J v n p d W P t X 7 o A E 1 G P U W B 6 S p p 6 i E 6 M M k 9 B K 8 4 R G q f p 7 I 8 G m l V p h 7 K j o c V 5 U z Q m J a a 0 0 4 k K Q 4 8 T Q R v n t f W N / K b h a 3 t d L 2 9 4 v 5 B S 4 W x J t e B p M v w H q k f H R f r 7 0 X T v v F k l 2 x U 6 k 2 + d H r m t x + p V C w U 3 A o S U T f A Q 8 F 8 R r O 1 q l J x z b + 7 p 8 S L O L a b t b y u 3 s r q 2 v n m H W Q 2 Z 8 B 9 u X G i M / E / F n X 9 j G W a h 4 p f 0 X e C N j X T n H Y i S H K g c d r 2 x t c z v / G s L W G x t 7 + z u F f c P i y q M J a F N E v J Q d j H m I Q O H C j 8 O R 3 h l J l e R T C X I 0 N 8 = " > 6 H A a < l a t e x i t s h 1 o _ b a s e 6 4 = " y A A A 5 E Z k h G H V H d O M S 3 B l E G E m n d K C h 0 D H B x 9 X i c b V D L T g I F z L 2 D L 8 Q X 6 t J N I 1 p R b Z u J / X j f W / o W M z B H F m g o y P + T H 0 l O / A P m h N E 9 o l K q N p x I c K D U J P D O Z H k H r q Y E Z / H L y 6 R V T i h 2 x b m t l e p X W C u Q i z S p A A y Y p 0 X x C J C a S m a y I j L D E R K j W k 7 c v X s 8 r R f L N V a O w V a J k 5 G S p C P 5 0 g K h u N O T i L o B H r j m M 4 K 1 k R 5 6 A d Y h S O 7 9 G J F I 0 z G e E i h o g o c U O U m a e o p t D 9 F + 9 Q Y h i Q M q N O Y c q a 5 j R 9 p N s N S M s J S + M W a i O G F H p G r j 3 N A e f F e X c + l q a T F 1 f U 3 Y e b S r O R x F E E Z + g c V Z G L b l 0 J d 1 l a t e x i t s h a _ > b a s e 6 4 = " H B j < t 5 3 8 5 R X / g f P 4 A c C i P W w = = < / l a t e x Z X o x E b G T K P A d k Y U m J b V m 4 v / e V 4 K Y j + P W C N u / D x x 8 g x f G u W I Q 6 V t x Y A X 6 c P r 5 w L e y t m Y 6 o p A t o S y Y b g r r 6 8 T j U t R E J y k w G O 2 X B S m o 4 P C 8 / / x U G j O Q E d I p J t n d 0 9 e / + g p a E a E t o k E Y 9 k x 8 e 3 p c 7 u 5 Z 4 5 f s y Z 0 o z b b R V W V t f W N 4 q K i 3 B O z 2 J q R f i o W A I a 1 g b 6 a E X Y j 1 S J h Z c o U z P N a S e W F I + K p 2 1 / f D 3 z 2 4 9 U P h I L i c b V D L S s N A F 2 9 p r 1 p f U Z d u B o X B Q z v W 9 G J V e 5 s y v R A r Y 5 H I K A = " > A A t N D 9 S + h 9 u X C j i 1 n x J 5 9 8 4 T b P Q 1 g M Q T y A U p i i 6 L b l x W s 9 M s Y 5 l M J + 3 Q y S T T G d " h a 1 _ b a s e 6 4 = s m Q n v 1 s S I v M B s t K a P 6 j r k U o = < / l t i e x i t > < l a t e x a U i 6 x E M 3 W r 1 q / q h 9 w B I t Q s Z G s C P Z M S y = c Z P e T A 8 X Y v U " N > A A A B 8 n i c b V B f 1 8 p I C E t M t C m q Y E w Y F r + 8 T F r V i m N r y n I z Q 3 7 M k Q 7 R r A 0 Z Y J I S z S e G Y C K X N H 9 z / A K b 9 a T 9 W K W E x / z 0 Z y V 7 R z C J g u A z U v 0 q q y M P R 3 M A Z X D g A u p w A w 1 o Y S O s i k U o G A U r e d n C M l f d G q m R y 0 G 5 6 y u 9 p 1 E g K T e Y 3 M 3 7 9 h P X R q j 4 E a Y J Q p s Z k s S 8 D O q Q T D J 6 x V + a n h C 2 Y S O u n k k W A b x O 3 J x U U I 7 o q P z V H y q W R j w G J 0 e k Z K e P X X e P P f m L 7 w 0 N Y H A 4 3 3 Z p i + F F Y x g v 2 A 7 V K y a b N G z W 6 W Z F Y o S 3 + Z / y 6 j l G p R r z N l F S F O 1 D D p Y h 5 G w R I T Z e 5 S G C D k 5 y l s b G 2 t 7 x R 3 S 3 v 7 B 4 d H A faster solution: dynamic programming Fix n ∈ S = � n 1 , . . . , n k � . For each i ≤ k , φ i : Z( n − n i ) − → Z( n ) a �− → a + e i S = � 6 , 9 , 20 � : Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 14 / 27

  56. q + I Q 6 V t x Y A X 6 u J G j E b G T K P A d k Y W W x d + a n h C 2 Y S O u G p f T C N u / G x x 8 g x U m 6 t 8 / / x U G j O Q E 4 o P U w L e y t m Y 6 o p C o b P V m 4 v / e V 4 K Y c P E R J y k w G O 2 X B S m V Z 5 y P X R q j 4 E a Y J 9 M 7 6 i k U o G A U r e d h 9 s 3 1 D D p Y h 5 G w R I k 3 s 0 p 1 E g e T e Y 3 M n C J k V H y q W R j w G J q x P n k s S 8 D O q Q T D z o l u d J z a 2 R y 0 G 5 Q p W k A b x O 3 J x U U I 7 A t 6 B G 1 r 6 0 = " > A A A 9 b X i c b V D L T g I x m 3 L B s e 6 4 = " i N d x g A w 2 G B 6 W e P D 9 u c F 2 b H E m n d K C h 0 5 m 0 Q E 2 Z 8 B 9 u X G i M W G l D B L 8 Q X 6 t J N I z H D 3 Z k B E 3 V H d O M S E a _ S 3 + g c V Z G L b l E T a E M W a i O G F H p G r Z F j X y Y b g r r 6 8 T j r d 1 Z f U 3 Y e b S r O R x + N 1 > = = < / l a t e x i t < W l a t e x i t s h a w P A J e f F e X c + l q 0 F 5 6 8 5 R X / g f P 4 A c 2 F S / p A D J i n R f G I I J K K Z r I i M s M R E m 6 k N K S 9 e N 9 H B p Z c y E e j a C j I / F C Q c 6 Q J p 4 A Q A R c u o A 4 3 0 I m M E J D w D K / w Z j 1 d B g k R 3 8 c v L p F W r u 7 w V v T 0 r 1 6 / y O o p n m L r h F J Q i o 0 4 V i p u 1 v E 2 k u x 1 I x w O B / 3 O 1 M 6 d 0 7 5 d d q p B 3 r R M 3 J y U I U e j b i 1 R h E 0 T 2 i U q b 8 3 U w B q N Q l 9 M 5 m l X P Z A E C k V j T M Z 4 S L u G h o x S 5 a V Z 6 i k 6 M c Z 9 F G z W 6 W Z F Y o S 3 + F Y w + K e P X X e P P f N b L Z 9 B I t Q s Z S s C P Y a 8 O K x g v 2 A 7 V K y m Z h 5 x R 3 S 3 v 7 B 4 d H e t O T j l G p Z r z N l 7 5 7 Z 0 N Y H A 4 / 3 Z p i F G y R S G C D k 2 y l s b 6 q a x t e x i t > < l a t e i l t s h a 1 _ b a s e a / 4 H 7 9 T E f L V j 5 z i 8 < g f X 5 A 6 R c k U c = 6 = / B > A A A B 8 n i c b V N = S w M x E M 3 W r 1 q " 0 " T t 2 v n x A 8 1 9 s / F H J R r r V a N D Z P E + / F b 7 1 E g e T e Y 3 M 3 9 h 0 P X R q j 4 E a Y J 9 p s M F l G p Z r z N l F S 6 1 k D D p Y h 5 G w R I 3 y 6 T P x O 3 J x U U I 7 W o z A V H y q W R j w G J q b k i C k U o G A U r e d n s l p d J j d T c y 0 G 5 Q u j O x N g v 2 A 7 V K y a b Y z K W 6 W Z F Y o S 3 + G x O w 6 x E M 3 W r 1 q / q h 9 8 B I t Q s Z S s C P Z Y F + e 7 C D k 2 y l s b G 5 t x S R 3 S 3 v 7 B 4 d H 5 G R K 7 e P X X e P P f m L Z 0 y N Y H A 4 / 3 Z p i Z F k n w Z Y e b S r O R x 1 F E + U g c V Z G L b l E T 3 3 f M S e y t m Y 6 o p A 5 t y Z Y b g r r 6 8 T j r X d a W w w / g f P 4 A c 2 y P W = R = < / l a t e x i t > X 5 a A i O G F H p G r + j N e 8 f F e X c + l q 0 F J 5 L U k W u / G x x 8 g x f W G I C Q 6 V t x Y A X 6 u + N T j 6 s S 8 D O q Q T D J Z V p + a n h C 2 Y S O u G d J E o C w G O 2 X B S m E o P 8 y / / x U G j O Q E 4 t k J b b G T K P A d k Y U x m V R m 4 v / e V 4 K Y c P P M S X / E y c j J c j Q 6 B e e I o O Q x A E V m n C s t Q N 7 k R 5 6 A d Y j 5 a P c n r V 2 e d o v l u y K V e K g H K T N P U U n R h l P O x Q m i c 0 S t X f G q U x W I + 0 m W G p G O J 0 e w r G i E S Z j P K R d Q 1 4 k x 3 s r q 2 v p H f L G t y 7 + z u F f c P W i q u b J J 9 j G W a h 4 E m a n x t z b + 7 p 8 S L O l L b M a M h x t c z v / 1 I p W K u r N O T i L o B H g r m 2 d F e N E v J Q d j y s K G C c N j X T n H Y i S X H g w O N a / A G u / Z F O < / l t D e x i t > < l a t e x 6 s t f I e I Z X e L O e r B r / 3 f q Y j + a s b O c Q i w " m D a K v I s 9 L 0 = > f A A A B 8 n i c b V B 3 V s " h a 1 _ b a s e 6 4 = A L 2 J j 5 i 4 H O s n V Q h E l h W Z H / J j j n S I Z W T g A Z O U a D 4 x B B Q i J M J o E n p l M U y 5 6 / h E / r x t r / 8 J N m I P T A J e l e p X W R 1 5 O I j t K I M D 5 1 C H G 2 h y 4 F V Z E R l h i o k 1 R B O 7 C s / j l Z d K q V h y v n A j t J N I z H B D Z k B S X 6 J b l x i I o 8 I I 6 Q m b = " > A A A B 9 X i c V 8 D L T g I x F L 2 D L + U U T w U P E m T k 3 P u z 0 w 9 X s S Z 0 r b 9 b e y s D / j R 0 O p O 2 o y E T s 8 O N C 4 1 x 6 7 + 4 8 2 0 s W O f r 3 f q Y j + a s b c r Q / s D 6 / A G y C Z B e Q 2 J j K I M D 5 1 C H G h O A E w h I e I Z X e L F < h J " 8 a m w z C u D a a M 4 U F O d I D w 0 i V j = 6 / t l a t e x i t > < l a e e x i t s h a 1 _ b a s V V O Y E S 8 0 I p 9 N C L 1 0 N w m S M h 7 R r q M A 0 p V C k B B k a / e J X b x S 2 O K B C E 4 6 V 6 j p B W m n M 5 N p y k V v J v 7 d P W P t X 7 S o J E 1 G A p 6 9 S p p 6 i E 6 M M k B K U 8 4 R G q f p 7 I 8 G B S 4 t m 7 K j o c V 5 U z Q p a Q a 0 0 4 k K Q 4 8 T t h J e d f W N / K b h a 3 t n 2 R 9 4 v 5 B S 4 W x J L v + l 7 v w H q k f H R f r p X k T v v F k l 2 x U 6 B M 0 H 3 r m t x + p V C w U d o 2 S U T f A Q 8 F 8 R r A I 5 q l J x z b + 7 p 8 S L O L a b t b y u 3 s r q 2 v n m H W Q 2 Z 8 B 9 u X G i M / E / F n X 9 j G W a h 4 p f 0 X e C N j X T n H Y i S H K g c d r 2 x t c z v / G s L W G x t 7 + z u F f c P i y q M J a F N E v J Q d j H m I Q O H C j 8 O R 3 h l J l e R T C X I 0 N 8 = " > 6 H A a < l a t e x i t s h 1 o _ b a s e 6 4 = " y A A A 5 E Z k h G H V H d O M S 3 B l E G E m n d K C h 0 D H B x 9 X i c b V D L T g I F z L 2 D L 8 Q X 6 t J N I 1 p 1 b Z u J / X j f W / o W M z B H F m g o y P + T H 0 l O / A P m h N E 9 o l K q N p x I c K D U J P D O Z H k H r q Y E Z / H L y 6 R V T i h 2 b m t l e p X W R C u Q i z S p A A y Y p 0 X x C J C a S m a y I j L D E R K j W k 7 c v X s 8 r R f L N V a O w V a J k 5 G S p C P 5 0 g K h u N O T i L o B H r j m M 4 K 1 k R 5 6 A d Y h S O 7 9 G J F I 0 z G e E i h o g o c U O U m a e o p t D 9 F + 9 Q Y h i Q M q N O Y c q a 5 j R 9 p N s N S M s x S + M W a i O G F H p G r j 3 N A e f F e X c + l q a T F 1 f U 3 Y e b S r O R x F E E Z + g c V Z G L b l 0 J d 1 l a t e x i t s h a _ > b a s e 6 4 = " H B j < t 5 3 8 5 R X / g f P 4 A c C i P W w = = < / l a t e x Z X o x E b G T K P A d k Y U m J b V m 4 v / e V 4 K Y j + P W C N u / G D x 8 g x f G u W I Q 6 V t x Y A X 6 c P r 5 w L e y t m Y 6 o p A t o S y Y b g r r 6 8 T j U t R E J y k w G O 2 X B S m o 4 P C 8 / / x U G j O Q E d I p a 3 t n d 0 9 e / + g p J p E E t o k E Y 9 k x 8 a b K o P u 5 Z 4 5 f s y Z 0 7 q z b R V W V t f W N 4 e c h A J O z 2 J q R f i o W B h I 1 g b 6 a E X Y j 1 a K i I Z o U z P N a S e W F c U + p 2 1 / f D 3 z 2 4 9 3 D I F X i c b V D L S s N A L B 2 p r 1 p f U Z d u B 9 A t z v W 9 G J V e 5 s y v R A r Y 5 H I K A = " > A o Q M n Q S + h 9 u X C j i 1 9 T x 5 9 8 4 T b P Q 1 g J M N s y U p i i 6 L b l x W A T 9 s Y 5 l M J + 3 Q y S T x d " h a 1 _ b a s e 6 4 = s m Q n v 1 s S I v M B s t K a P 6 j r k U o = < / l t i e x i t > < l a t e x a U i 6 x E M 3 W r 1 q / q h 9 w B I t Q s Z G s C P Z M S y = c Z P e T A 8 X Y v U " N > A A A B 8 n i c b V B f 1 8 p I C E t M t C m q Y E w Y F r + 8 T F r V i m N r y n I z Q 3 7 M k Q 7 R r A 0 Z Y J I S z S e G Y C K X N H 9 z / A K b 9 a T 9 W K W E x / z 0 Z y V 7 R z C J g u A z U v 0 q q y M P R 3 M A Z X D g A u p w A w 1 o Y S O s i k U o G A U r e d n C M l f d G q m R y 0 G 5 6 y u 9 p 1 E g e K e Y 3 M 3 7 9 h P X R q j 4 E a Y J Q p s Z k s S 8 D O q Q T D J 6 x V + a n h C 2 Y S O u n k k W A b x O 3 J x U U I 7 o q P z V H y q W R j w G J 0 T k Z K e P X X e P P f m L 7 w 0 N Y H A 3 / 3 Z p i + F F Y x g v 2 A 7 V K y a b N G z W 6 W Z F Y o S 3 + Z 4 y 6 j l G p Z R z N l F S F O 1 D D p Y h 5 G w R I T r e 5 S G C D k 5 y l s b G 2 t v 7 H 4 B 7 d 3 S 3 R x A faster solution: dynamic programming Fix n ∈ S = � n 1 , . . . , n k � . For each i ≤ k , φ i : Z( n − n i ) − → Z( n ) a �− → a + e i Z( n ) = � i ≤ k φ i (Z( n − n i )) S = � 6 , 9 , 20 � : Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 14 / 27

  57. A faster solution: dynamic programming Fix n ∈ S = � n 1 , . . . , n k � . For each i ≤ k , φ i : Z( n − n i ) − → Z( n ) a �− → a + e i Z( n ) = � i ≤ k φ i (Z( n − n i )) Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 14 / 27

  58. A faster solution: dynamic programming Fix n ∈ S = � n 1 , . . . , n k � . For each i ≤ k , φ i : Z( n − n i ) − → Z( n ) a �− → a + e i Z( n ) = � i ≤ k φ i (Z( n − n i )) n ∈ S = � 6 , 9 , 20 � Z( n ) L( n ) 0 { 0 } { 0 } Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 14 / 27

  59. A faster solution: dynamic programming Fix n ∈ S = � n 1 , . . . , n k � . For each i ≤ k , φ i : Z( n − n i ) − → Z( n ) a �− → a + e i Z( n ) = � i ≤ k φ i (Z( n − n i )) n ∈ S = � 6 , 9 , 20 � Z( n ) L( n ) 0 { 0 } { 0 } 6 6 { e 1 } { 1 } 0 � e 1 Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 14 / 27

  60. A faster solution: dynamic programming Fix n ∈ S = � n 1 , . . . , n k � . For each i ≤ k , φ i : Z( n − n i ) − → Z( n ) a �− → a + e i Z( n ) = � i ≤ k φ i (Z( n − n i )) n ∈ S = � 6 , 9 , 20 � Z( n ) L( n ) 0 { 0 } { 0 } 6 6 { e 1 } { 1 } 0 � e 1 9 9 0 � e 2 { e 2 } { 1 } Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 14 / 27

  61. A faster solution: dynamic programming Fix n ∈ S = � n 1 , . . . , n k � . For each i ≤ k , φ i : Z( n − n i ) − → Z( n ) a �− → a + e i Z( n ) = � i ≤ k φ i (Z( n − n i )) n ∈ S = � 6 , 9 , 20 � Z( n ) L( n ) 0 { 0 } { 0 } 6 6 { e 1 } { 1 } 0 � e 1 9 9 0 � e 2 { e 2 } { 1 } 6 12 e 1 � 2 e 1 { 2 e 1 } { 2 } Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 14 / 27

  62. A faster solution: dynamic programming Fix n ∈ S = � n 1 , . . . , n k � . For each i ≤ k , φ i : Z( n − n i ) − → Z( n ) a �− → a + e i Z( n ) = � i ≤ k φ i (Z( n − n i )) n ∈ S = � 6 , 9 , 20 � Z( n ) L( n ) 0 { 0 } { 0 } 6 6 { e 1 } { 1 } 0 � e 1 9 9 0 � e 2 { e 2 } { 1 } 6 12 e 1 � 2 e 1 { 2 e 1 } { 2 } 6 15 e 2 � (1 , 1 , 0) { (1 , 1 , 0) } { 2 } Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 14 / 27

  63. A faster solution: dynamic programming Fix n ∈ S = � n 1 , . . . , n k � . For each i ≤ k , φ i : Z( n − n i ) − → Z( n ) a �− → a + e i Z( n ) = � i ≤ k φ i (Z( n − n i )) n ∈ S = � 6 , 9 , 20 � Z( n ) L( n ) 0 { 0 } { 0 } 6 6 { e 1 } { 1 } 0 � e 1 9 9 0 � e 2 { e 2 } { 1 } 6 12 e 1 � 2 e 1 { 2 e 1 } { 2 } 6 15 e 2 � (1 , 1 , 0) { (1 , 1 , 0) } { 2 } 9 e 1 � (1 , 1 , 0) Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 14 / 27

  64. A faster solution: dynamic programming Fix n ∈ S = � n 1 , . . . , n k � . For each i ≤ k , φ i : Z( n − n i ) − → Z( n ) a �− → a + e i Z( n ) = � i ≤ k φ i (Z( n − n i )) n ∈ S = � 6 , 9 , 20 � Z( n ) L( n ) 0 { 0 } { 0 } 6 6 { e 1 } { 1 } 0 � e 1 9 9 0 � e 2 { e 2 } { 1 } 6 12 e 1 � 2 e 1 { 2 e 1 } { 2 } 6 15 e 2 � (1 , 1 , 0) { (1 , 1 , 0) } { 2 } 9 e 1 � (1 , 1 , 0) 6 18 2 e 1 � 3 e 1 { 3 e 1 , 2 e 2 } { 2 , 3 } Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 14 / 27

  65. A faster solution: dynamic programming Fix n ∈ S = � n 1 , . . . , n k � . For each i ≤ k , φ i : Z( n − n i ) − → Z( n ) a �− → a + e i Z( n ) = � i ≤ k φ i (Z( n − n i )) n ∈ S = � 6 , 9 , 20 � Z( n ) L( n ) 0 { 0 } { 0 } 6 6 { e 1 } { 1 } 0 � e 1 9 9 0 � e 2 { e 2 } { 1 } 6 12 e 1 � 2 e 1 { 2 e 1 } { 2 } 6 15 e 2 � (1 , 1 , 0) { (1 , 1 , 0) } { 2 } 9 e 1 � (1 , 1 , 0) 6 18 2 e 1 � 3 e 1 { 3 e 1 , 2 e 2 } { 2 , 3 } 9 e 2 � 2 e 2 Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 14 / 27

  66. A faster solution: dynamic programming Fix n ∈ S = � n 1 , . . . , n k � . For each i ≤ k , φ i : Z( n − n i ) − → Z( n ) a �− → a + e i Z( n ) = � i ≤ k φ i (Z( n − n i )) n ∈ S = � 6 , 9 , 20 � Z( n ) L( n ) 0 { 0 } { 0 } 6 6 { e 1 } { 1 } 0 � e 1 9 9 0 � e 2 { e 2 } { 1 } 6 12 e 1 � 2 e 1 { 2 e 1 } { 2 } 6 15 e 2 � (1 , 1 , 0) { (1 , 1 , 0) } { 2 } 9 e 1 � (1 , 1 , 0) 6 18 2 e 1 � 3 e 1 { 3 e 1 , 2 e 2 } { 2 , 3 } 9 e 2 � 2 e 2 20 20 0 � e 3 { e 3 } { 1 } Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 14 / 27

  67. A faster solution: dynamic programming Fix n ∈ S = � n 1 , . . . , n k � . For each i ≤ k , φ i : Z( n − n i ) − → Z( n ) a �− → a + e i Z( n ) = � i ≤ k φ i (Z( n − n i )) n ∈ S = � 6 , 9 , 20 � Z( n ) L( n ) 0 { 0 } { 0 } 6 6 { e 1 } { 1 } 0 � e 1 9 9 0 � e 2 { e 2 } { 1 } 6 12 e 1 � 2 e 1 { 2 e 1 } { 2 } 6 15 e 2 � (1 , 1 , 0) { (1 , 1 , 0) } { 2 } 9 e 1 � (1 , 1 , 0) 6 18 2 e 1 � 3 e 1 { 3 e 1 , 2 e 2 } { 2 , 3 } 9 e 2 � 2 e 2 20 20 0 � e 3 { e 3 } { 1 } . . . . . . . . . Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 14 / 27

  68. A faster solution: dynamic programming Fix n ∈ S = � n 1 , . . . , n k � . For each i ≤ k , φ i : Z( n − n i ) − → Z( n ) ψ i : L( n − n i ) − → L( n ) a �− → a + e i Z( n ) = � i ≤ k φ i (Z( n − n i )) n ∈ S = � 6 , 9 , 20 � Z( n ) L( n ) 0 { 0 } { 0 } 6 6 { e 1 } { 1 } 0 � e 1 9 9 0 � e 2 { e 2 } { 1 } 6 12 e 1 � 2 e 1 { 2 e 1 } { 2 } 6 15 e 2 � (1 , 1 , 0) { (1 , 1 , 0) } { 2 } 9 e 1 � (1 , 1 , 0) 6 18 2 e 1 � 3 e 1 { 3 e 1 , 2 e 2 } { 2 , 3 } 9 e 2 � 2 e 2 20 20 0 � e 3 { e 3 } { 1 } . . . . . . . . . Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 14 / 27

  69. A faster solution: dynamic programming Fix n ∈ S = � n 1 , . . . , n k � . For each i ≤ k , φ i : Z( n − n i ) − → Z( n ) ψ i : L( n − n i ) − → L( n ) a �− → a + e i ℓ �− → ℓ + 1 Z( n ) = � i ≤ k φ i (Z( n − n i )) n ∈ S = � 6 , 9 , 20 � Z( n ) L( n ) 0 { 0 } { 0 } 6 6 { e 1 } { 1 } 0 � e 1 9 9 0 � e 2 { e 2 } { 1 } 6 12 e 1 � 2 e 1 { 2 e 1 } { 2 } 6 15 e 2 � (1 , 1 , 0) { (1 , 1 , 0) } { 2 } 9 e 1 � (1 , 1 , 0) 6 18 2 e 1 � 3 e 1 { 3 e 1 , 2 e 2 } { 2 , 3 } 9 e 2 � 2 e 2 20 20 0 � e 3 { e 3 } { 1 } . . . . . . . . . Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 14 / 27

  70. A faster solution: dynamic programming Fix n ∈ S = � n 1 , . . . , n k � . For each i ≤ k , φ i : Z( n − n i ) − → Z( n ) ψ i : L( n − n i ) − → L( n ) a �− → a + e i ℓ �− → ℓ + 1 Z( n ) = � L( n ) = � i ≤ k φ i (Z( n − n i )) i ≤ k ψ i (L( n − n i )) n ∈ S = � 6 , 9 , 20 � Z( n ) L( n ) 0 { 0 } { 0 } 6 6 { e 1 } { 1 } 0 � e 1 9 9 0 � e 2 { e 2 } { 1 } 6 12 e 1 � 2 e 1 { 2 e 1 } { 2 } 6 15 e 2 � (1 , 1 , 0) { (1 , 1 , 0) } { 2 } 9 e 1 � (1 , 1 , 0) 6 18 2 e 1 � 3 e 1 { 3 e 1 , 2 e 2 } { 2 , 3 } 9 e 2 � 2 e 2 20 20 0 � e 3 { e 3 } { 1 } . . . . . . . . . Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 14 / 27

  71. A faster solution: dynamic programming Fix n ∈ S = � n 1 , . . . , n k � . For each i ≤ k , φ i : Z( n − n i ) − → Z( n ) ψ i : L( n − n i ) − → L( n ) a �− → a + e i ℓ �− → ℓ + 1 Z( n ) = � L( n ) = � i ≤ k φ i (Z( n − n i )) i ≤ k ψ i (L( n − n i )) n ∈ S = � 6 , 9 , 20 � L( n ) 0 { 0 } 6 9 12 15 18 20 . . . Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 14 / 27

  72. A faster solution: dynamic programming Fix n ∈ S = � n 1 , . . . , n k � . For each i ≤ k , φ i : Z( n − n i ) − → Z( n ) ψ i : L( n − n i ) − → L( n ) a �− → a + e i ℓ �− → ℓ + 1 Z( n ) = � L( n ) = � i ≤ k φ i (Z( n − n i )) i ≤ k ψ i (L( n − n i )) n ∈ S = � 6 , 9 , 20 � L( n ) 0 { 0 } 6 6 { 1 } 0 � 1 9 12 15 18 20 . . . Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 14 / 27

  73. A faster solution: dynamic programming Fix n ∈ S = � n 1 , . . . , n k � . For each i ≤ k , φ i : Z( n − n i ) − → Z( n ) ψ i : L( n − n i ) − → L( n ) a �− → a + e i ℓ �− → ℓ + 1 Z( n ) = � L( n ) = � i ≤ k φ i (Z( n − n i )) i ≤ k ψ i (L( n − n i )) n ∈ S = � 6 , 9 , 20 � L( n ) 0 { 0 } 6 6 { 1 } 0 � 1 9 9 { 1 } 0 � 1 12 15 18 20 . . . Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 14 / 27

  74. A faster solution: dynamic programming Fix n ∈ S = � n 1 , . . . , n k � . For each i ≤ k , φ i : Z( n − n i ) − → Z( n ) ψ i : L( n − n i ) − → L( n ) a �− → a + e i ℓ �− → ℓ + 1 Z( n ) = � L( n ) = � i ≤ k φ i (Z( n − n i )) i ≤ k ψ i (L( n − n i )) n ∈ S = � 6 , 9 , 20 � L( n ) 0 { 0 } 6 6 { 1 } 0 � 1 9 9 { 1 } 0 � 1 6 12 { 2 } 1 � 2 15 18 20 . . . Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 14 / 27

  75. A faster solution: dynamic programming Fix n ∈ S = � n 1 , . . . , n k � . For each i ≤ k , φ i : Z( n − n i ) − → Z( n ) ψ i : L( n − n i ) − → L( n ) a �− → a + e i ℓ �− → ℓ + 1 Z( n ) = � L( n ) = � i ≤ k φ i (Z( n − n i )) i ≤ k ψ i (L( n − n i )) n ∈ S = � 6 , 9 , 20 � L( n ) 0 { 0 } 6 6 { 1 } 0 � 1 9 9 { 1 } 0 � 1 6 12 { 2 } 1 � 2 6 15 { 2 } 1 � 2 18 20 . . . Christopher O’Neill (SDSU) Computing delta sets of affine semigroups Feb 10, 2020 14 / 27

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend