computational optimization
play

Computational Optimization Constrained Optimization Algorithms - PowerPoint PPT Presentation

Computational Optimization Constrained Optimization Algorithms Same basic algorithms Repeat Determine descent direction Determine step size Take a step Until Optimal But now must consider feasibility, e.g. Pick a feasible descent


  1. Computational Optimization Constrained Optimization Algorithms

  2. Same basic algorithms Repeat � Determine descent direction � Determine step size � Take a step Until Optimal But now must consider feasibility, e.g. Pick a feasible descent directions Choose step size to maintain feasibility Need dual multipliers to check optimality

  3. Builds on Prior Approaches Unconstrained: Lots of approaches min f x ( ) Linear Equality Constrained: Convert to unconstrained min f x ( ) and solve = s t . . Ax b

  4. Prior Approaches (cont) Linear Inequality Constrained: Identify active constraints min f x ( ) Solve subproblems ≥ s t . . Ax b Nonlinear Inequality Constrained: Linearize constraints min f x ( ) Solve subproblems g x ≥ s t . . ( ) 0

  5. Feasible Direction Methods Use feasible descent directs. 1 + Consider min x Qx ' c x ' 2 = s t . . Ax b ˆ If we have feasible point x = + then all are feasible. ˆ x x Zp

  6. Reduced Problem 1 ˆ + + + + ˆ ˆ min ( x Zp Q x )' ( Zp ) c x '( Zp ) p 2 � 1 1 + + + + ˆ ˆ ˆ ˆ min p Z QZp ' ' ( Qx c Zp )' xQx c x ' p 2 2 � 1 + + ˆ min p Z QZp ' ' ( Qx c Zp )' p 2 = Z QZ ' : Reduced Hessian + + = ˆ Z Q x '( ( Zp ) c ) : Reduced Gradient

  7. Reduced Newton’s Equation For general problems ∇ = 2 Z ' f x Z ( ) : Reduced Hessian ∇ = Z ' f x ( ) : Reduced Gradient Reduced Newton Equations ∇ = ∇ 2 Z ' f x Z v ( ) - ' Z f x ( ) − ⇒ = − ∇ ∇ 2 1 v ( Z ' f x Z ( ) ) Z ' f x ( ) in reduced space − ⇒ = = − ∇ ∇ 2 1 p Zv Z Z ( ' f x Z ( ) ) Z ' f x ( ) in original spac e Then apply usual Newton’s Method

  8. Reduced Steepest Descent Use reduced steepest descent direction = − ∇ v Z ' f x ( ) in reduced space ⇒ = = − ∇ d Zv ZZ ' f x ( ) in original space Convergence rate depends on condition number of reduced Hessian ∇ ≤ ∇ 2 2 Cond Z ( ' f x Z ( ) ) Cond Z Z Cond ( ' ) ( f x ( )) KEY POINT – Construct Z to have good conditioning!

  9. Ways to Compute Z Projection Method (orthogonal and non-orthogonal) Variable Reduction QR Factorization What are they and how do they effect conditioning? How can you use them to compute multipliers?

  10. Projection Method Find closest feasible point − = 1 2 min c x Ax 0 x 2 Compute a KKT point: This is optimal projection since problem is convex

  11. Projection Method − = 1 min c x Ax 0 x 2 ⇒ λ = − + λ 1 L x ( , ) c x ( Ax )' 2 ( ) ∇ λ = − − + λ = L x ( , ) c x A ' 0 ⇒ x KKT are − = Ax b 0 − − λ = Ac Ax AA ' 0 ( ) − ⇒ λ = ⇒ λ = 1 AA ' Ac AA ' Ac ( ) − ⇒ = − 1 x c A ' AA ' Ac ( ) ⎡ − ⎤ ⇒ = − 1 x I A ' AA ' A c ⎣ ⎦ ( ) ⎡ ⎤ − = − 1 Projection Matrix P I A ' AA ' A ⎣ ⎦

  12. Project method The matrix ( ) − = − 1 Z I A ' AA ' A is a basis for the null space matrix of A. Check ( ) ⎡ ⎤ − = − = − = 1 AZ A I A ' AA ' A A A 0 ⎣ ⎦

  13. Get Lagrangian Multipliers for free! The matrix ( ) ( ) − − = 1 = 1 = A A ' AA ' where AA AA ' AA ' I r r is the right inverse matrix for A. For general problems = min ( ) . . f x s t Ax b λ = ∇ ' * A f x ( *) r

  14. Let’s try it For ⎡ ⎤ = + + + 1 2 2 2 2 min f x ( ) x x x x ⎣ ⎦ 2 1 2 3 4 + + + = s t . . x x x x 1 1 2 3 4 Projection matrix − 1 ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 1 0 0 0 1 1 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 0 1 0 0 1 1 ⎢ ⎥ ( ) ⎢ ⎥ ⎢ ⎥ [ ] ⎢ ⎥ [ ] − = − 1 = − Z I A ' AA ' A 1 1 1 1 1 1 1 1 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 0 0 1 0 1 1 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 0 0 0 1 1 ⎣ 1 ⎦ ⎡ ⎤ 3 1 1 1 − − − ⎢ ⎥ 4 4 4 4 1 3 1 1 ⎢ ⎥ − − − = ⎢ 4 4 4 4 ⎥ 1 1 3 1 − − − ⎢ ⎥ 4 4 4 4 ⎢ 1 1 1 3 ⎥ ⎣ ⎦ − − − 4 4 4 4

  15. Solve FONC for Optimal Point FONC ⎡ ⎤ x ⎡ ⎤ 1 ⎢ ⎥ 1 ⎢ ⎥ ⎢ ⎥ x 1 ⎢ ⎥ ∇ − λ = = λ ⎢ ⎥ 2 f x ( ) A ' ⎢ ⎥ ⎢ ⎥ 1 x ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ 1 ⎢ ⎥ x ⎣ ⎦ 4 + + + = x x x x 1 1 2 3 4

  16. Check Optimality Conditions ⎡ ⎤ ⎡ ⎤ 3 1 1 1 = 1 − − − x * [1111]/ 4 ⎢ ⎥ ⎢ ⎥ 4 4 4 4 For 1 3 1 1 1 ⎢ ⎥ ⎢ ⎥ − − − 1 ∇ = ∇ = = f x ( *) [1111]/ 4 4 4 4 4 Z f x ( *) * 0 ⎢ ⎥ ⎢ ⎥ 1 1 3 1 1 4 − − − ⎢ ⎥ ⎢ ⎥ 4 4 4 4 ⎢ ⎥ ⎢ 1 1 1 3 ⎥ ⎣ ⎦ 1 ⎣ ⎦ − − − 4 4 4 4 = Ax * b Using Lagrangian 1 ( ) − = 1 = A A ' AA ' [1111]' 4 r λ = ∇ = A f x ( *) 1/ 4 r Clearly ∇ = λ f x ( *) A '

  17. You try it = 1 min f x ( ) x Cx ' 2 = s t . . Ax b For − − − ⎡ ⎤ 0 13 6 3 ⎢ ⎥ − − ⎡ ⎤ ⎡ ⎤ 13 23 9 3 2 1 2 1 2 ⎢ ⎥ = = = ⎢ ⎥ ⎢ ⎥ C A b ⎢ ⎥ − − − − ⎣ ⎦ ⎣ ⎦ 6 9 12 1 1 1 3 1 3 ⎢ ⎥ − ⎢ ⎥ ⎣ ⎦ 3 3 1 3 Find projection matrix Confirm optimality conds are Z’Cx*=0, Ax* = b Find x* Compute Lagrangian multipliers Check Lagrangian form of the multipliers.

  18. Projected Gradient Method Algorithm for min f(x) s.t. Ax=b Let Z=I-A’(AA’) -1 A x 0 given g =gradf(x 0 ) While not optimal d=-Z’g x i+1 = x i+ α d (use linesearch) g =gradf(x i+1 ) i=i+1

  19. Projected Gradient Method Equivalent to steepest descent on f(x+Zp) where x is some feasible point. So convergence rate depends on condition number of this problem The condition number is less than equal condition of Hessian of f * Compute Z’HZ for last example and check it’s conditioning:

  20. Lagrangian Multipliers Each null space method yields a corresponding calculation of the right inverse. Thus each yields calculation of corresponding dual multipliers.

  21. Variable Reduction Method Let A=[B N] A is m by n B is m by m assume m < n ⎡ − ⎤ − 1 B N = ⎢ ⎥ Z ⎣ ⎦ I is a basis matrix for null space of A ⎡ ⎤ ⎡ ⎤ − − 1 1 B B [ ] = ⇒ = = + ⎢ ⎥ ⎢ ⎥ A AA B N I 0 r r ⎣ ⎦ ⎣ ⎦ 0 0

  22. Try on our example Take for example first two columns for B ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 2 1 2 1 2 1 2 1 [ ] = = = ⎢ ⎥ A ⎢ ⎥ B N ⎢ ⎥ ⎢ ⎥ − − ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 1 1 3 1 ⎣ 1 1 3 1 ⎦ Then − − ⎡ ⎤ ⎡ ⎤ 1 2 1 1 ⎢ ⎥ ⎢ ⎥ − − 4 3 1 2 ⎢ ⎥ ⎢ ⎥ = = Z A ⎢ ⎥ ⎢ ⎥ r 1 0 0 0 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ 0 1 0 0 Condition number of Z’ CZ = 158 better but not great

  23. QR Factorization Use Gram-Schmidt algorithm to make orthogonal factorize A’=QR with Q orthogonal and R upper triangular ⎡ ⎤ R [ ] = = 1 ⎢ ⎥ A ' QR Q Q 1 2 ⎣ ⎦ 0 ∈ × ∈ × ∈ × − ∈ × where A m n Q , n m Q , n ( n m R ), m m 1 2 1 = = Q R − T Z Q A 2 r 1 1

  24. QR on problem Use matlab command QR [Q R ] = qr(A’) Q2 = Q(:,3:4) Cond(Q2’*C*Q2) = 9.79

  25. Next Problem Consider Next Hardest Problem min f x ( ) ≥ s t . . Ax b How could we adapt gradient projection or other linear equality constrained problem to this problem?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend