complex spectrum of finite density qcd
play

Complex spectrum of finite-density QCD Hiromichi Nishimura Johann - PowerPoint PPT Presentation

Complex spectrum of finite-density QCD Hiromichi Nishimura Johann Wolfgang Goethe-Universitt Talk@Frankfurt 07 December 2015 <HN, M. Ogilvie, and K. Pangeni, in preparation> Summary 1. Complex Mass Spectrum 2. Sinusoidal oscillation


  1. Complex spectrum of finite-density QCD Hiromichi Nishimura Johann Wolfgang Goethe-Universität Talk@Frankfurt 07 December 2015 <HN, M. Ogilvie, and K. Pangeni, in preparation>

  2. Summary 1. Complex Mass Spectrum 2. Sinusoidal oscillation M ê T = 4 5 Mass Spectrum 4 0.008 3 0.006 < tr P † H r L trP H 0 L > C 2 0.004 1 0 1 2 3 4 5 6 0.2 0.002 0.1 0.000 Arg @ l j D 0.0 10 15 20 25 30 35 40 r - 0.1 - 0.2 0 1 2 3 4 5 6 m ê T

  3. Outline • Introduction - Polyakov loop, Sign problem, CK symmetry • Formalism - Strong-coupling lattice QCD, PT -symmetric system • Results & Discussions • Conclusions

  4. Introduction

  5. A phase diagram of QCD Temperature T Quark-Gluon Plasma sQGP Critical Point I n h o m o g e n Quarkyonic e o Hadronic Phase u Matter s S ? uSC c B 2SC dSC Liquid-Gas CFL Color Superconductors 0 CFL- K , Crystalline CSC Baryon Chemical Potential m B Nuclear Superfluid Meson supercurrent Gluonic phase, Mixed phase <Fukushima and Hatsuda, 2010> • Lattice simulations at finite μ is hard: the sign problem. • Consider finite-density QCD in view of the Polyakov loop.

  6. Polyakov loop • Wilson line in the temporal direction: Static quark, P ( ~ x ) R 1 /T x ) = P e i dx 4 A 4 ( x ) P ( ~ 0 1/T • Order parameter Low T: h tr P ( ~ x ) i = 0 ! F q = 1 Static anti-quark, P † ( ~ x ) Confined phase: unbroken Z(N) symmetry High T: h tr P ( ~ x ) i 6 = 0 ! F q = Finite 1/T Deconfined phase: broken Z(N) symmetry

  7. Sign problem • Partition function of QCD Z DA e − S Y M det M ( µ ) Z = • Fermion determinant is complex det M ( − µ ) = [det M ( µ )] ∗ Sign problem No positive weight, no importance sampling. • There are many approaches.... A new approach: Lefschetz thimble <E. Witten, 2010> <AuroraScience Collaboration, 2012> <H. Fujii, D. Honda, M. Kato, Y. Kikukawa, S. Komatsu, and T. Sano, 2013> and many more

  8. Sign problem in the MFA • Effective models of the Polyakov loop - Unphysical results at conventional real saddle points. <Dumitru, Pisarski and Zschiesche, 2005> <Fukushima and Hidaka, 2007> - C omplex but CK -symmetric saddle point can fix the problems. <HN, M. Ogilvie, K. Pangeni, 2014 & 2015> • Lefschetz-thimble technique - Integration cycles respect CK symmetry. <Y. Tanizaki, HN, K. Kashiwa, 2015> CK symmetry seems to play a crucial role in the complex domain.

  9. Charge conjugation ( C ) and complex conjugation ( K ) • CK symmetry in finite-density QCD Z DA e − S Y M det M ( µ ) Z = C : A µ → − A t µ det M ( µ ) = [det M ( − µ )] ∗ K : A µ → A ∗ CK µ • CK symmetry is an antiunitary operation.

  10. Setup

  11. Lattice QCD in (1+1)-dim • “Only quantum question”: What is the transfer matrix? • Solvable for SU(N) Yang-Mills on (1+1)-dim Lattice a β = 1/T t x P † P i +1 L i H 0 = g 2 β T 0 = h P i +1 | e − aH 0 | P i i where 2 C <Marinov and Terentev 1979> <Menotti and Onofri 1981> etc

  12. Lattice QCD in (1+1)-dim • The basis of group representation, r = r ¯ 1 3 3 8 1   1 0 0 0 T 0 = h r 0 | e � a g 2 β 2 C | r i 1 3 0 0 0   e 4 / 3 − →   1 ¯ 0 0 0 3   e 4 / 3 1 0 0 0 8 e 3 = r ’ ag 2 β - Set . = 1 2 - Show up to 6 highest eigenvalues: For pure SU(3), . r = 1 , 3 , ¯ 3 , 6 , ¯ 6 , 8 - 16 X 16 matrix is sufficient when there is a mixing.

  13. Lattice QCD in (1+1)-dim • Inclusion of static quarks T = h r 0 | e � aH 0 / 2 det(1 + z 1 P ) det(1 + z 2 P † ) e � aH 0 / 2 | r i quark anti-quark • Symmetries - Particle-Antiparticle: (z 1 , z 2 ) → (z 2 , z 1 ) - Particle-Hole: (z 1 , z 2 ) → (1/z 1 , 1/z 2 ) because det(1 + zP ) = z N det(1 + P † /z ) • Alternative Hamiltonian, z 1 tr F P + z 2 tr F P † � � H = H 0 − β Real spectrum for low-lying eigenvalues. <P . Meisinger, M. Ogilvie and T. Wiser, 2010>

  14. Lattice QCD in (1+1)-dim • Transfer matrix is not Hermitian. + z 2 + z 3 det(1 + z 1 P ) = 1 + z 1 1 1 Pure SU(3) With quarks (z 2 = 0) z 2     1 0 0 0 1 + z 3 z 1 0 1 1 e 2 / 3 e 2 / 3 1 z 2 1+ z 3 z 2 0 0 0   z 1 1 1 1   e 4 / 3   e 2 / 3 e 4 / 3 e 4 / 3 e 13 / 6  1   z 2 1+ z 3  0 0 0 z 1 z 1 1 1     e 4 / 3 e 2 / 3 e 4 / 3 e 4 / 3 e 13 / 6   1 z 2 1+ z 3 0 0 0 z 1 0 1 1 e 3 e 13 / 6 e 13 / 6 e 3 - Transfer matrix is real but not symmetric when z 1 and z 2 are not equal. - A manifestation of the sign problem.

  15. Generalization to higher dimensions φ (0) � ( ~ x ) • In (1+1)-dim with static quarks, the results of mass spectrum are exact. • They are also the results for higher dimensions at leading order in strong coupling. φ (0) The leading diagrams for h � ( ~ x ) � (0) i are the shortest possible paths. <Kogut and Sinclair, 1981> � ( ~ x )

  16. PT -symmetric (or CK -symmetric) Systems

  17. Source: Jorge Cham (2015)

  18. Non-Hermitian PT -symmetric QM H = p − ( ix ) N • “Classic” PT -symmetric Quantum Mechanics: <C. Bender and S. Boettcher, 1998> - N = 2: Harmonic oscillator - N = 3: Non-hermitian Hamiltonian - 1 < N < 2: Complex eigenvalues • Eigenvalues are either real or form a complex conjugate pair: H | j i = E j | j i Proof If H ( PT | j i ) = PT H | j i = E ∗ j ( PT | j i ) then

  19. Correlation functions in PT -symmetric system <P . Meisinger and M. Ogilvie, 2014> • PT -symmetric partition function T → diag( e − m 0 a , e − m 1 a , . . . ) ⇣ ⌘ Z = tr T N = X X e − Lm q + e − Lm ∗ e − Lm p + q p q Manifestly real from CK symmetry. • Three possible scenarios for a PT -symmetric system I. All m j are real. II. m 0 is real but some m j form a complex conjugate pair. ← Our model III. m 0 is complex (two ground states).

  20. Correlation functions in PT -symmetric system <P . Meisinger and M. Ogilvie, 2014> • 1-point function (Polyakov loop) h tr F P ( x ) i = "X ⌘# 1 ⇣ e − β m p h p | tr F P | p i + e − β m q h q | tr F P | q i + e − β m ∗ X q h q ∗ | tr F P | q ∗ i Z p q Manifestly real from CK symmetry. • 2-point function ∞ e − xm j h 0 | tr F P † | j i h j | tr F P | 0 i X tr F P † ( x ) tr F P (0) ⌦ ↵ C = ( L → ∞ ) j =1 Complex complex pairs of m j give rise to a sinusoidal exponential decay.

  21. Results

  22. Hermitian Case (z = z 1 = z 2 ) 6 • Mass spectrum is real. 5 Mass Spectrum 4 • The Polyakov loop and the conjugate 3 loop are the same. 2 1 • Invariant under z → 1/z 1.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.8 Polyakov Loops • Peaks at z=1 (M=0). 0.6 0.4 0.2 - Mass Spectrum = Re[m j - m 0 ] 0.0 - Arg[ λ j ] = Im[m j - m 0 ] 0.0 0.5 1.0 1.5 2.0 2.5 3.0 z - <TrP> - <TrP † >

  23. 5 Finite density (z 2 =0) Mass Spectrum 4 • Mass spectrum becomes complex: 3 complex conjugate pairs form. 2 1 • Invariant under z 1 → 1/z 1 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.2 0.1 Arg @ l j D • The peak of mass spectrum at z 1 =1 0.0 (M= μ ). - 0.1 - 0.2 • The Polyakov loop and the conjugate 1.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 loop are different. 0.8 Polyakov Loops - Mass Spectrum = Re[m j - m 0 ] 0.6 0.4 - Arg[ λ j ] = Im[m j - m 0 ] 0.2 - <TrP> 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 - <TrP † > z 1

  24. M ê T = 4 Fermion Mass / T = 4 5 Mass Spectrum 4 3 • Mass spectrum becomes complex: 2 complex conjugate pairs form. 1 0 1 2 3 4 5 6 0.2 • The peak of the spectrum at the 0.1 Hermitian point, μ = M. Arg @ l j D 0.0 - 0.1 • Similar structure as the case of z 2 =0 - 0.2 because M/T is large. 0 1 2 3 4 5 6 1.0 0.8 Polyakov Loops - Mass Spectrum = Re[m j - m 0 ] 0.6 0.4 - Arg[ λ j ] = Im[m j - m 0 ] 0.2 - <TrP> 0.0 0 1 2 3 4 5 6 - <TrP † > m ê T

  25. M ê T = 2 Fermion Mass / T = 2 5 Mass Spectrum 4 3 • For lower mass, the symmetric 2 structure disappears. 1 0 1 2 3 4 5 6 • Lower eigenvalues become real at 0.2 lower μ . 0.1 Arg @ l j D 0.0 - 0.1 - 0.2 1.0 0 1 2 3 4 5 6 Polyakov Loops 0.8 - Mass Spectrum = Re[m j - m 0 ] 0.6 0.4 - Arg[ λ j ] = Im[m j - m 0 ] 0.2 - <TrP> 0.0 0 1 2 3 4 5 6 - <TrP † > m ê T

  26. M ê T = 1 Fermion Mass / T = 1 5 Mass Spectrum 4 3 • The larger eigenvalues become real at 2 lower μ . 1 0 1 2 3 4 5 6 0.2 0.1 Arg @ l j D 0.0 - 0.1 - 0.2 1.0 0 1 2 3 4 5 6 Polyakov Loops 0.8 - Mass Spectrum = Re[m j - m 0 ] 0.6 0.4 - Arg[ λ j ] = Im[m j - m 0 ] 0.2 - <TrP> 0.0 0 1 2 3 4 5 6 - <TrP † > m ê T

  27. M ê T = 0 Fermion Mass / T = 0 5 Mass Spectrum 4 3 • Spectrum remains complex for 2 any M/T< ∞ . 1 0 1 2 3 4 5 6 0.2 0.1 Arg @ l j D 0.0 - 0.1 - 0.2 1.0 0 1 2 3 4 5 6 Polyakov Loops 0.8 - Mass Spectrum = Re[m j - m 0 ] 0.6 0.4 - Arg[ λ j ] = Im[m j - m 0 ] 0.2 - <TrP> 0.0 0 1 2 3 4 5 6 - <TrP † > m ê T

  28. 2-point function • Sinusoidal modulation. • Loss of spectral positivity. 0.008 ag 2 β /2 = 0.1, z1 = 0.8, z2 = 0 0.006 < tr P † H r L trP H 0 L > C 0.004 0.002 0.000 10 15 20 25 30 35 40 r

  29. Discussions

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend