comparison of two ground based mass estimation methods on
play

Comparison of Two Ground-based Mass Estimation Methods on Real Data - PowerPoint PPT Presentation

Comparison of Two Ground-based Mass Estimation Methods on Real Data R. Alligier D. Gianazza M. Ghasemi-Hamed N. Durand ENAC/MAIAA - IRIT/APO International Conference on Research in Air Transportation, 2014 R. Alligier, D. Gianazza, M.


  1. Comparison of Two Ground-based Mass Estimation Methods on Real Data R. Alligier D. Gianazza M. Ghasemi-Hamed N. Durand ENAC/MAIAA - IRIT/APO International Conference on Research in Air Transportation, 2014 R. Alligier, D. Gianazza, M. Ghasemi-Hamed, N. Durand (ENAC) Estimation of the Aircraft Mass ICRAT 2014 1 / 31

  2. Objective Context Two mass estimation methods: Adaptive method [Schultz et al., 2012] Least square method [Alligier et al., 2013] A comparison was done on synthetic data [Alligier et al., 2013] In this work: comparison on real data Mode-C radar data + weather data Actual mass not known Comparison of the trajectory prediction accuracies R. Alligier, D. Gianazza, M. Ghasemi-Hamed, N. Durand (ENAC) Estimation of the Aircraft Mass ICRAT 2014 2 / 31

  3. Objective R. Alligier, D. Gianazza, M. Ghasemi-Hamed, N. Durand (ENAC) Estimation of the Aircraft Mass ICRAT 2014 3 / 31

  4. Objective R. Alligier, D. Gianazza, M. Ghasemi-Hamed, N. Durand (ENAC) Estimation of the Aircraft Mass ICRAT 2014 3 / 31

  5. Objective R. Alligier, D. Gianazza, M. Ghasemi-Hamed, N. Durand (ENAC) Estimation of the Aircraft Mass ICRAT 2014 3 / 31

  6. Objective R. Alligier, D. Gianazza, M. Ghasemi-Hamed, N. Durand (ENAC) Estimation of the Aircraft Mass ICRAT 2014 3 / 31

  7. An energy-rate oriented approach Newton’s laws dv 2 = power ( mass ) 1 dt + g dz 2 dt mass � �� � � �� � energy-rate f ( mass ) f is given by a physical model of the forces Using past positions given by radar We compute the observed energy-rate from radar data We search a mass such that: � � observed energy-rate = f mass R. Alligier, D. Gianazza, M. Ghasemi-Hamed, N. Durand (ENAC) Estimation of the Aircraft Mass ICRAT 2014 4 / 31

  8. Computing the power mass provided by BADA 1 The adaptive method [Schultz et al., 2012] 2 The least square method [Alligier et al., 2012] 3 Experimental setup 4 Results 5 R. Alligier, D. Gianazza, M. Ghasemi-Hamed, N. Durand (ENAC) Estimation of the Aircraft Mass ICRAT 2014 5 / 31

  9. Computing the power mass provided by BADA 1 The adaptive method [Schultz et al., 2012] 2 The least square method [Alligier et al., 2012] 3 Experimental setup 4 Results 5 R. Alligier, D. Gianazza, M. Ghasemi-Hamed, N. Durand (ENAC) Estimation of the Aircraft Mass ICRAT 2014 6 / 31

  10. A Point Mass Model Lift Path angle Drag Thrust Weight m . dV TAS = Thr − D − m . g . sin ( γ ) dt R. Alligier, D. Gianazza, M. Ghasemi-Hamed, N. Durand (ENAC) Estimation of the Aircraft Mass ICRAT 2014 7 / 31

  11. A simplified model (longitudinal+vertical) V TAS . dV TAS + g . dz = ( Thr − D ) . V TAS dt dt m � �� � � �� � energy-rate power mass z : altitude Thr (Thrust): thrust of the engines D (Drag): drag of the aircraft m : mass V TAS (True Air Speed): velocity in the air dV TAS : longitudinal acceleration dt dz dt = V TAS . sin ( γ ) : rate of climb R. Alligier, D. Gianazza, M. Ghasemi-Hamed, N. Durand (ENAC) Estimation of the Aircraft Mass ICRAT 2014 8 / 31

  12. A physical model V TAS . dV TAS + g . dz = ( Thr − D ) . V TAS dt dt m � �� � � �� � power energy-rate mass R. Alligier, D. Gianazza, M. Ghasemi-Hamed, N. Durand (ENAC) Estimation of the Aircraft Mass ICRAT 2014 9 / 31

  13. A physical model V TAS . dV TAS + g . dz = ( Thr − D ) . V TAS dt dt m � �� � � �� � power energy-rate mass BADA model Max climb thrust: Thr = f ( T , V TAS , z ) Drag: D = f ( T , V TAS , z , m ) R. Alligier, D. Gianazza, M. Ghasemi-Hamed, N. Durand (ENAC) Estimation of the Aircraft Mass ICRAT 2014 9 / 31

  14. A physical model V TAS . dV TAS + g . dz = ( Thr − D ) . V TAS = f ( T , V TAS , z , m ) dt dt m � �� � � �� � � �� � BADA model power energy-rate mass BADA model Max climb thrust: Thr = f ( T , V TAS , z ) Drag: D = f ( T , V TAS , z , m ) R. Alligier, D. Gianazza, M. Ghasemi-Hamed, N. Durand (ENAC) Estimation of the Aircraft Mass ICRAT 2014 9 / 31

  15. Equation at a given point = ( Thr − D ) . V TAS V TAS . dV TAS + g . dz = f ( T , V TAS , z , m ) dt dt m � �� � � �� � � �� � BADA model energy-rate power mass Using radar and weather data, we know: dV TAS dz T , z , dt , V TAS , dt R. Alligier, D. Gianazza, M. Ghasemi-Hamed, N. Durand (ENAC) Estimation of the Aircraft Mass ICRAT 2014 10 / 31

  16. Equation at a given point = ( Thr − D ) . V TAS V TAS . dV TAS + g . dz = f ( T , V TAS , z , m ) dt dt m � �� � � �� � � �� � BADA model energy-rate power mass Using radar and weather data, we know: dV TAS dz T , z , dt , V TAS , dt The resulting equation: P ( m ) E = f ( T , V TAS , z , m ) = m ���� � �� � energy-rate � �� � BADA model P , a known function R. Alligier, D. Gianazza, M. Ghasemi-Hamed, N. Durand (ENAC) Estimation of the Aircraft Mass ICRAT 2014 10 / 31

  17. Computing the power mass provided by BADA 1 The adaptive method [Schultz et al., 2012] 2 The least square method [Alligier et al., 2012] 3 Experimental setup 4 Results 5 R. Alligier, D. Gianazza, M. Ghasemi-Hamed, N. Durand (ENAC) Estimation of the Aircraft Mass ICRAT 2014 11 / 31

  18. The adaptive method [Schultz et al., 2012] Principle Assuming an initial guess m 0 At each point i , the mass m i is estimated using m i − 1 R. Alligier, D. Gianazza, M. Ghasemi-Hamed, N. Durand (ENAC) Estimation of the Aircraft Mass ICRAT 2014 12 / 31

  19. The adaptive method [Schultz et al., 2012] Principle Assuming an initial guess m 0 At each point i , the mass m i is estimated using m i − 1 � � P i m i E i = m i R. Alligier, D. Gianazza, M. Ghasemi-Hamed, N. Durand (ENAC) Estimation of the Aircraft Mass ICRAT 2014 12 / 31

  20. The adaptive method [Schultz et al., 2012] Principle Assuming an initial guess m 0 At each point i , the mass m i is estimated using m i − 1 � � � � P i m i P i m i E i = ⇔ m i = m i E i R. Alligier, D. Gianazza, M. Ghasemi-Hamed, N. Durand (ENAC) Estimation of the Aircraft Mass ICRAT 2014 12 / 31

  21. The adaptive method [Schultz et al., 2012] Principle Assuming an initial guess m 0 At each point i , the mass m i is estimated using m i − 1 � � � � � � P i m i P i m i P i m i − 1 E i = ⇔ m i = ≃ m i E i E i R. Alligier, D. Gianazza, M. Ghasemi-Hamed, N. Durand (ENAC) Estimation of the Aircraft Mass ICRAT 2014 12 / 31

  22. The adaptive method [Schultz et al., 2012] Principle Assuming an initial guess m 0 At each point i , the mass m i is estimated using m i − 1 � � � � � � P i m i P i m i P i m i − 1 E i = ⇔ m i = ≃ m i E i E i At each new point i : m i = P i ( m i − 1 ) E i R. Alligier, D. Gianazza, M. Ghasemi-Hamed, N. Durand (ENAC) Estimation of the Aircraft Mass ICRAT 2014 12 / 31

  23. Introduction of the sensitivity parameter β [Schultz et al., 2012] The previous update formula can be rewritten:   − 1     � � m i − 1 E i − P i ( m i − 1 )   m i = m i − 1 1 +   P i ( m i − 1 ) m i − 1     � �� �   error on the energy rate when using m i − 1 R. Alligier, D. Gianazza, M. Ghasemi-Hamed, N. Durand (ENAC) Estimation of the Aircraft Mass ICRAT 2014 13 / 31

  24. Introduction of the sensitivity parameter β [Schultz et al., 2012] The previous update formula can be rewritten:   − 1     � � m i − 1 E i − P i ( m i − 1 )   m i = m i − 1 1 +   P i ( m i − 1 ) m i − 1     � �� �   error on the energy rate when using m i − 1 Introducing a sensitivity parameter β i : � � �� − 1 m i − 1 E i − P i ( m i − 1 ) m i = m i − 1 1 + β i P i ( m i − 1 ) m i − 1 R. Alligier, D. Gianazza, M. Ghasemi-Hamed, N. Durand (ENAC) Estimation of the Aircraft Mass ICRAT 2014 13 / 31

  25. Logic of the sensitivity parameter β [Schultz et al., 2012] β low ⇒ point i has nearly no impact, m i ≃ m i − 1 β is dynamically adjusted according ∆ ˙ E i , . . . , ∆ ˙ E i − p Update rule [Schultz et al., 2012] � � ∆ ˙ E i − ∆ ˙ � � E avg if i > 0 and ∆ ˙ � � E i > 0 . 0001 and � < 3 � � ∆ ˙ E avg � then β i = max ( 0 . 205 , β i − 1 + 0 . 05 ) else β i = 0 . 005 R. Alligier, D. Gianazza, M. Ghasemi-Hamed, N. Durand (ENAC) Estimation of the Aircraft Mass ICRAT 2014 14 / 31

  26. Logic of the sensitivity parameter β [Schultz et al., 2012] � � �� − 1 m i − 1 E i − P i ( m i − 1 ) m i = m i − 1 1 + β i P i ( m i − 1 ) m i − 1 This mechanism increases robustness If ∆ ˙ E i repeatedly high in the same order of magnitude, β will increase, strengthening adaptation Isolated low or high ∆ ˙ E i has a lower impact on adaptation R. Alligier, D. Gianazza, M. Ghasemi-Hamed, N. Durand (ENAC) Estimation of the Aircraft Mass ICRAT 2014 15 / 31

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend