comparison of channels criteria for domination by a
play

Comparison of Channels: Criteria for Domination by a Symmetric - PowerPoint PPT Presentation

Comparison of Channels: Criteria for Domination by a Symmetric Channel Anuran Makur and Yury Polyanskiy EECS Department, Massachusetts Institute of Technology LIDS Student Conference 2017 . . . . . . . . . . . . . . . . . . .


  1. Comparison of Channels: Criteria for Domination by a Symmetric Channel Anuran Makur and Yury Polyanskiy EECS Department, Massachusetts Institute of Technology LIDS Student Conference 2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Makur & Y. Polyanskiy (MIT) Symmetric Channel Domination 3 February 2017 1 / 17

  2. Outline Introduction 1 Preliminaries Guiding Question Motivation Conditions for Domination by a Symmetric Channel 2 Less Noisy Domination and Log-Sobolev Inequalities 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Makur & Y. Polyanskiy (MIT) Symmetric Channel Domination 3 February 2017 2 / 17

  3. Preliminaries A channel is a set of conditional distributions W Y | X that is represented by a row stochastic matrix W ∈ R q × r sto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Makur & Y. Polyanskiy (MIT) Symmetric Channel Domination 3 February 2017 3 / 17

  4. Preliminaries A channel is a set of conditional distributions W Y | X that is represented by a row stochastic matrix W ∈ R q × r sto . P q = probability simplex of row vectors in R q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Makur & Y. Polyanskiy (MIT) Symmetric Channel Domination 3 February 2017 3 / 17

  5. Preliminaries A channel is a set of conditional distributions W Y | X that is represented by a row stochastic matrix W ∈ R q × r sto . P q = probability simplex of row vectors in R q . Recall that KL divergence is defined as: ( P X ( x ) ) ∑ D ( P X || Q X ) � P X ( x ) log . Q X ( x ) x ∈X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Makur & Y. Polyanskiy (MIT) Symmetric Channel Domination 3 February 2017 3 / 17

  6. Preliminaries A channel is a set of conditional distributions W Y | X that is represented by a row stochastic matrix W ∈ R q × r sto . P q = probability simplex of row vectors in R q . Recall that KL divergence is defined as: ( P X ( x ) ) ∑ D ( P X || Q X ) � P X ( x ) log . Q X ( x ) x ∈X Definition (Less Noisy Preorder [KM77]) W ∈ R q × r sto is less noisy than V ∈ R q × s sto , denoted W ≽ ln V , iff: ∀ P X , Q X ∈ P q , D ( P X W || Q X W ) ≥ D ( P X V || Q X V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Makur & Y. Polyanskiy (MIT) Symmetric Channel Domination 3 February 2017 3 / 17

  7. Guiding Question Definition ( q -ary Symmetric Channel) The q -ary symmetric channel is defined as:  δ δ  1 − δ · · · q − 1 q − 1 δ δ 1 − δ · · ·   q − 1 q − 1 ∈ R q × q W δ �   . . . ...   sto . . . . . .     δ δ · · · 1 − δ q − 1 q − 1 where δ ∈ [0 , 1] is the total crossover probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Makur & Y. Polyanskiy (MIT) Symmetric Channel Domination 3 February 2017 4 / 17

  8. Guiding Question Definition ( q -ary Symmetric Channel) The q -ary symmetric channel is defined as:  δ δ  1 − δ · · · q − 1 q − 1 δ δ 1 − δ · · ·   q − 1 q − 1 ∈ R q × q W δ �   . . . ...   sto . . . . . .     δ δ · · · 1 − δ q − 1 q − 1 where δ ∈ [0 , 1] is the total crossover probability. Remark: For every channel V ∈ R q × s sto , W 0 ≽ ln V and V ≽ ln W ( q − 1) / q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Makur & Y. Polyanskiy (MIT) Symmetric Channel Domination 3 February 2017 4 / 17

  9. Guiding Question Definition ( q -ary Symmetric Channel) The q -ary symmetric channel is defined as:  δ δ  1 − δ · · · q − 1 q − 1 δ δ 1 − δ · · ·   q − 1 q − 1 ∈ R q × q W δ �   . . . ...   sto . . . . . .     δ δ · · · 1 − δ q − 1 q − 1 where δ ∈ [0 , 1] is the total crossover probability. Remark: For every channel V ∈ R q × s sto , W 0 ≽ ln V and V ≽ ln W ( q − 1) / q . 0 , q − 1 [ ] What is the q -ary symmetric channel with the largest δ ∈ q that is less noisy than a given channel V ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Makur & Y. Polyanskiy (MIT) Symmetric Channel Domination 3 February 2017 4 / 17

  10. Motivation: Strong Data Processing Inequality Data Processing Inequality : For any channel V ∈ R q × s sto , ∀ P X , Q X ∈ P q , D ( P X || Q X ) ≥ D ( P X V || Q X V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Makur & Y. Polyanskiy (MIT) Symmetric Channel Domination 3 February 2017 5 / 17

  11. Motivation: Strong Data Processing Inequality Strong Data Processing Inequality [AG76]: For any channel V ∈ R q × s sto , ∀ P X , Q X ∈ P q , η D ( P X || Q X ) ≥ D ( P X V || Q X V ) where η ∈ [0 , 1] is a channel dependent contraction coefficient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Makur & Y. Polyanskiy (MIT) Symmetric Channel Domination 3 February 2017 5 / 17

  12. Motivation: Strong Data Processing Inequality Strong Data Processing Inequality [AG76]: For any channel V ∈ R q × s sto , ∀ P X , Q X ∈ P q , η D ( P X || Q X ) ≥ D ( P X V || Q X V ) where η ∈ [0 , 1] is a channel dependent contraction coefficient. Relation to Erasure Channels [PW16]: A q -ary erasure channel E 1 − η ∈ R q × ( q +1) erases its input with probability sto 1 − η , and keeps it the same with probability η . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Makur & Y. Polyanskiy (MIT) Symmetric Channel Domination 3 February 2017 5 / 17

  13. Motivation: Strong Data Processing Inequality Strong Data Processing Inequality [AG76]: For any channel V ∈ R q × s sto , ∀ P X , Q X ∈ P q , η D ( P X || Q X ) ≥ D ( P X V || Q X V ) where η ∈ [0 , 1] is a channel dependent contraction coefficient. Relation to Erasure Channels [PW16]: A q -ary erasure channel E 1 − η ∈ R q × ( q +1) erases its input with probability sto 1 − η , and keeps it the same with probability η . What is the q-ary erasure channel with the smallest η ∈ [0 , 1] that is less noisy than a given channel V ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Makur & Y. Polyanskiy (MIT) Symmetric Channel Domination 3 February 2017 5 / 17

  14. Motivation: Strong Data Processing Inequality Strong Data Processing Inequality [AG76]: For any channel V ∈ R q × s sto , ∀ P X , Q X ∈ P q , η D ( P X || Q X ) ≥ D ( P X V || Q X V ) where η ∈ [0 , 1] is a channel dependent contraction coefficient. Relation to Erasure Channels [PW16]: A q -ary erasure channel E 1 − η ∈ R q × ( q +1) erases its input with probability sto 1 − η , and keeps it the same with probability η . What is the q-ary erasure channel with the smallest η ∈ [0 , 1] that is less noisy than a given channel V ? Prop: E 1 − η ≽ ln V ⇔ ∀ P X , Q X ∈ P q , η D ( P X || Q X ) ≥ D ( P X V || Q X V ). SDPI = ≽ ln domination by erasure channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Makur & Y. Polyanskiy (MIT) Symmetric Channel Domination 3 February 2017 5 / 17

  15. Motivation: Wyner’s Wiretap Channel 𝑍 𝑜 Decoder 𝑁 𝑌 𝑜 𝑁 𝑄 𝑍,𝑎|𝑌 Encoder 𝑎 𝑜 Eavesdropper Channel P Y | X = V is the main channel . P Z | X = W δ is the eavesdropper channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Makur & Y. Polyanskiy (MIT) Symmetric Channel Domination 3 February 2017 6 / 17

  16. Motivation: Wyner’s Wiretap Channel 𝑍 𝑜 Decoder 𝑁 𝑌 𝑜 𝑁 𝑄 𝑍,𝑎|𝑌 Encoder 𝑎 𝑜 Eavesdropper Channel P Y | X = V is the main channel . P Z | X = W δ is the eavesdropper channel . Secrecy capacity C S = maximum rate that can be sent to the legal receiver such that P ( M ̸ = ˆ M ) and 1 n I ( M ; Z n ) asymptotically vanish. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Makur & Y. Polyanskiy (MIT) Symmetric Channel Domination 3 February 2017 6 / 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend