compact third order logarithmic limiting for non linear
play

Compact Third Order Logarithmic Limiting for Non-Linear Hyperbolic - PowerPoint PPT Presentation

Review Compact Third Order Reconstruction Numerical Experiment Compact Third Order Logarithmic Limiting for Non-Linear Hyperbolic Conservation Laws Cada 1 , Manuel Torrilhon 2 and Rolf Jeltsch 1 Miroslav 1 Seminar for Applied Mathematics,


  1. Review Compact Third Order Reconstruction Numerical Experiment Compact Third Order Logarithmic Limiting for Non-Linear Hyperbolic Conservation Laws Cada 1 , Manuel Torrilhon 2 and Rolf Jeltsch 1 Miroslav ˇ 1 Seminar for Applied Mathematics, ETH-Zurich Switzerland 2 Applied and Computational Mathematics Princeton University NJ, USA Eleventh International Conference on Hyperbolic Problems Theory, Numerics, Applications ENS Lyon, France, July 17-21, 2006 M. ˇ Cada, M. Torrilhon, R. Jeltsch Compact Third Order Logarithmic Limiting 1/ 26

  2. Review Compact Third Order Reconstruction Numerical Experiment Some Definitions Standard finite volume update: d dt ¯ L i (ˆ u i = u i ) 1 u ( − ) u (+) u ( − ) u (+) � F (ˆ 2 , ˆ 2 ) − F (ˆ 2 , ˆ � = 2 ) i − 1 i − 1 i + 1 i + 1 ∆ x Left and right limits: u ( ± ) ˆ ) ± ˆ 2 = lim u ( x ) i + 1 x → ( x i + 1 2 Slopes and its ratio ("local smoothness measurement"): δ i − 1 2 = ¯ u i + 1 − ¯ 2 δ i + 1 u i and θ i = δ i + 1 2 M. ˇ Cada, M. Torrilhon, R. Jeltsch Compact Third Order Logarithmic Limiting 2/ 26

  3. Review Compact Third Order Reconstruction Numerical Experiment Semi-discrete Method Seperation of time- and space-discretization using Godunov’s flux and Heun: u i + ∆ x u i + 1 u ( − ) ˆ ¯ 2 σ i = ¯ = 2 φ ( θ i ) δ i + 1 i + 1 2 2 u i − ∆ x u i − 1 u (+) ˆ ¯ 2 σ i = ¯ = 2 φ ( θ i ) δ i + 1 i − 1 2 2 Slope-limiter in terms of flux limiting: δ i + 1 σ i = ( ∆ x ) φ ( θ i ) 2 M. ˇ Cada, M. Torrilhon, R. Jeltsch Compact Third Order Logarithmic Limiting 3/ 26

  4. Review Compact Third Order Reconstruction Numerical Experiment Standard Second Order TVD Limiters classical 2. order TVD limiter 2 1.8 1.6 1.4 1.2 φ ( θ ) 1 0.8 0.6 0.4 Minmod MC 0.2 van − Leer Superbee 0 0 1 2 3 4 5 6 θ M. ˇ Cada, M. Torrilhon, R. Jeltsch Compact Third Order Logarithmic Limiting 4/ 26

  5. Review Compact Third Order Reconstruction Numerical Experiment Standard Second Order TVD Limiters Accuracy Test: advection profile with classical 2. order TVD limiter 1.2 exact Minmod Superbee 1 MC van Leer 0.8 0.6 u 0.4 0.2 0 − 0.2 − 1 − 0.8 − 0.6 − 0.4 − 0.2 0 0.2 0.4 0.6 0.8 1 x M. ˇ Cada, M. Torrilhon, R. Jeltsch Compact Third Order Logarithmic Limiting 5/ 26

  6. Review Compact Third Order Reconstruction Numerical Experiment Extension to the classical 2 nd Order TVD Limiters Aim: Capture smooth Extrema better ( φ ( θ ) � = 0 for θ < 0) Use the compact stencil (5 point) more efficiently (piecewise quadratic reconstruction ⇒ O (∆ x 3 ) ) Keep it simple and efficient M. ˇ Cada, M. Torrilhon, R. Jeltsch Compact Third Order Logarithmic Limiting 6/ 26

  7. Review Compact Third Order Reconstruction Numerical Experiment Local Double Logarithmic Reconstruction (LDLR) Based on the idea of non-linear and non-polynomial, i.e. hyperbolic [Marquina 94] and logaritmic reconstruction [Artebrant and Schroll 05]. Essentially O (∆ x 3 ) Handles discontinuity as well as local extrema r 0 ( x ) ≈ A + B log ( x + C ) + D log ( x + D ) M. ˇ Cada, M. Torrilhon, R. Jeltsch Compact Third Order Logarithmic Limiting 7/ 26

  8. Review Compact Third Order Reconstruction Numerical Experiment LDLR Some questions: Can this method be formulated in “standard” limitation context? What will the limiter function look like? Can we avoid the evaluation of the log-function? Some answers: We can expect the final representation: u ( − ) u i + Φ ( − ) (¯ ˆ ¯ = u i , δ i − 1 2 , δ i + 1 2 ) i + 1 2 u (+) u i − Φ (+) (¯ ˆ ¯ = 2 ) u i , δ i − 1 2 , δ i + 1 i − 1 2 M. ˇ Cada, M. Torrilhon, R. Jeltsch Compact Third Order Logarithmic Limiting 8/ 26

  9. Review Compact Third Order Reconstruction Numerical Experiment LDLR Some questions: Can this method be formulated in “standard” limitation context? What will the limiter function look like? Can we avoid the evaluation of the log-function? Some answers: We can expect the final representation: u ( − ) u i + Φ ( − ) (¯ ˆ ¯ = u i , δ i − 1 2 , δ i + 1 2 ) i + 1 2 u (+) u i − Φ (+) (¯ ˆ ¯ = 2 ) u i , δ i − 1 2 , δ i + 1 i − 1 2 M. ˇ Cada, M. Torrilhon, R. Jeltsch Compact Third Order Logarithmic Limiting 8/ 26

  10. Review Compact Third Order Reconstruction Numerical Experiment Logarithmic Limiter We can write the reconstructed values: u i + 1 u i − 1 u ( − ) u (+) 2 φ ( θ − 1 ˆ 2 = ¯ ˆ = ¯ 2 φ ( θ i ) δ i + 1 and ) δ i − 1 i + 1 i − 1 i 2 2 2 with the limiter: φ ( θ ) = 2 p (( p 2 − 2 p θ + 1 ) log ( p ) − ( 1 − θ )( p 2 − 1 )) ( p 2 − 1 )( p − 1 ) 2 with | θ | q p = p ( θ ) = 2 1 + | θ | 2 q . M. ˇ Cada, M. Torrilhon, R. Jeltsch Compact Third Order Logarithmic Limiting 9/ 26

  11. Review Compact Third Order Reconstruction Numerical Experiment Logarithmic Limiter Logarithmic Limiter 3.5 φ ( θ ,1.0) 3 φ ( θ ,1.4) 2.5 φ ( θ ,2.0) (2+ θ )/3 2 1.5 φ ( θ ) 1 0.5 0 − 0.5 − 1 − 1.5 − 6 − 4 − 2 0 2 4 6 8 θ M. ˇ Cada, M. Torrilhon, R. Jeltsch Compact Third Order Logarithmic Limiting 10/ 26

  12. Review Compact Third Order Reconstruction Numerical Experiment Logarithmic Limiter Full third order reconstruction: φ ( θ ) = 2 + θ 3 , results in a standard third order interpolation Essential characteristics of the log-limiter: φ ( 1 + ξ ) = 1 + ξ 3 + O ( ξ 4 ) and φ ( − 1 + ξ ) = 1 3 + ξ 3 + O ( ξ 4 ) lim θ → 0 φ ( θ ) → 0 and lim θ →±∞ φ ( θ ) → 0 M. ˇ Cada, M. Torrilhon, R. Jeltsch Compact Third Order Logarithmic Limiting 11/ 26

  13. Review Compact Third Order Reconstruction Numerical Experiment Simplified Limiter Simplified Limiter 2 " ( ! ,1.4) limiter 1.5 1 " ( ! ) 0.5 0 ! 0.5 ! 1 ! 6 ! 4 ! 2 0 2 4 6 8 ! � 2 + θ � �� 2 | θ | 3 0 . 6 + | θ | , 5 φ ( θ ) = max −| θ | , min 3 , | θ | M. ˇ Cada, M. Torrilhon, R. Jeltsch Compact Third Order Logarithmic Limiting 12/ 26

  14. Review Compact Third Order Reconstruction Numerical Experiment Time Integration Explicit 3. order Runge-Kutta-method [Gottlieb and Shu 98]: u ( 1 ) u n u n ) ¯ ¯ i + ∆ tL i (¯ = i 3 i + 1 u ( 2 ) u ( 1 ) u n u ( 1 ) )) ¯ 4 ¯ 4 (¯ + ∆ tL i (¯ = i i 1 i + 2 u ( 2 ) u n + 1 u n u ( 2 ) )) ¯ 3 ¯ 3 (¯ + ∆ tL i (¯ = i i M. ˇ Cada, M. Torrilhon, R. Jeltsch Compact Third Order Logarithmic Limiting 13/ 26

  15. Review Compact Third Order Reconstruction Numerical Experiment Stability Region of 3. Order Runge-Kutta Stability region: CFL ≤ 1.5 M. ˇ Cada, M. Torrilhon, R. Jeltsch Compact Third Order Logarithmic Limiting 14/ 26

  16. Review Linear Advection Equation Compact Third Order Reconstruction Non-linear Convervation Laws Numerical Experiment Convergence Test u t + u x = 0 , smooth and periodic Error Order (slope) 0 10 4 3 ! 5 L 1 10 L 1 2 1 ! 10 10 0 1 2 3 4 10 10 10 10 0 500 1000 1500 2000 2500 3000 N N Error Order (slope) 0 10 3 2 ! 5 L ! 10 L ! 1 ! 10 10 1 2 3 4 0 10 10 10 10 0 500 1000 1500 2000 2500 3000 N N M. ˇ Cada, M. Torrilhon, R. Jeltsch Compact Third Order Logarithmic Limiting 15/ 26

  17. Review Linear Advection Equation Compact Third Order Reconstruction Non-linear Convervation Laws Numerical Experiment Accuracy Test 1.2 exact LIM3 ENO3 1 LHHR LDLR 0.8 0.6 u 0.4 0.2 0 − 0.2 − 1 − 0.8 − 0.6 − 0.4 − 0.2 0 0.2 0.4 0.6 0.8 1 x M. ˇ Cada, M. Torrilhon, R. Jeltsch Compact Third Order Logarithmic Limiting 16/ 26

  18. Review Linear Advection Equation Compact Third Order Reconstruction Non-linear Convervation Laws Numerical Experiment Accuracy Test 0.62 1 0.82 0.6 1 0.8 0.58 0.78 0.98 0.76 0.95 0.56 0.74 0.96 0.54 u 0.72 0.52 0.7 0.94 0.9 0.68 0.5 0.92 0.66 0.48 0.64 0.85 0.46 0.9 − 0.75 − 0.7 − 0.65 − 0.35 − 0.3 − 0.25 0.05 0.1 0.15 0.45 0.5 0.55 x M. ˇ Cada, M. Torrilhon, R. Jeltsch Compact Third Order Logarithmic Limiting 17/ 26

  19. Review Linear Advection Equation Compact Third Order Reconstruction Non-linear Convervation Laws Numerical Experiment Euler system in one dimension Conservation of mass ∂ t ρ + ∂ x ( ρ v ) = 0 Conservation of momentum ∂ t ( ρ v ) + ∂ x ( ρ v 2 + p ) = 0 Conservation of energy ∂ t E + ∂ x v ( E + p ) = 0 M. ˇ Cada, M. Torrilhon, R. Jeltsch Compact Third Order Logarithmic Limiting 18/ 26

  20. Review Linear Advection Equation Compact Third Order Reconstruction Non-linear Convervation Laws Numerical Experiment Shu-Osher Shock Acoustic Problem 5 4.5 4 3.5 3 ρ 2.5 2 1.5 1 0.5 − 5 − 4 − 3 − 2 − 1 0 1 2 3 4 5 x M. ˇ Cada, M. Torrilhon, R. Jeltsch Compact Third Order Logarithmic Limiting 19/ 26

  21. Review Linear Advection Equation Compact Third Order Reconstruction Non-linear Convervation Laws Numerical Experiment Shu-Osher Shock Acoustic Problem exact 4.6 LIM3 LHHR 4.4 LDLR 4.2 4 ρ 3.8 3.6 3.4 3.2 3 2.8 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 x M. ˇ Cada, M. Torrilhon, R. Jeltsch Compact Third Order Logarithmic Limiting 20/ 26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend