comp331 557 chapter 4 duality theory
play

COMP331/557 Chapter 4: Duality Theory (Bertsimas & Tsitsiklis, - PowerPoint PPT Presentation

COMP331/557 Chapter 4: Duality Theory (Bertsimas & Tsitsiklis, Chapter 4) 130 Example minimize + 2 x 2 x 1 s.t. x 1 2 2 x 2 x 1 + x 2 1 + 5 x 1 x 2 x 1 , x 2 0 Goal: Find an upper bound on the optimal


  1. COMP331/557 Chapter 4: Duality Theory (Bertsimas & Tsitsiklis, Chapter 4) 130

  2. Example minimize + 2 x 2 x 1 s.t. x 1 ≥ 2 ≥ 2 x 2 − x 1 + x 2 ≥ 1 + ≥ 5 x 1 x 2 x 1 , x 2 ≥ 0 Goal: Find an upper bound on the optimal solution value z ∗ . Easy: Any feasible solution provides one. Examples: ⇒ z ∗ ≤ 14 ◮ ( x 1 , x 2 ) = ( 4 , 5 ) ⇒ z ∗ ≤ 11 ◮ ( x 1 , x 2 ) = ( 3 , 4 ) ⇒ z ∗ ≤ 10 ◮ ( x 1 , x 2 ) = ( 2 , 4 ) ⇒ z ∗ ≤ 8 ◮ ( x 1 , x 2 ) = ( 2 , 3 ) 131

  3. Example minimize + 2 x 2 ← z x 1 s.t. x 1 ≥ 2 ← C 1 ≥ 2 ← C 2 x 2 − x 1 + x 2 ≥ 1 ← C 3 + ≥ 5 ← C 4 x 1 x 2 x 1 , x 2 ≥ 0 New goal: Find a lower bound on the optimal solution value. Examples: ◮ C 4 ⇒ z ≥ 5 ◮ C 1 + 2 C 2 ⇒ z ≥ 6 ◮ 3 C 1 + 2 C 3 ⇒ ◮ 3 C 2 − C 3 ⇒ 132

  4. Example minimize + 2 x 2 ← z x 1 s.t. x 1 ≥ 2 ← C 1 ≥ 2 ← C 2 x 2 − x 1 + x 2 ≥ 1 ← C 3 + ≥ 5 ← C 4 x 1 x 2 x 1 , x 2 ≥ 0 Idea: Add non-negative combination p 1 · C 1 + p 2 · C 2 + p 3 · C 3 + p 4 · C 4 of the constraints, s.t.: z = x 1 + 2 x 2 ≥ ( p 1 − p 3 + p 4 ) · x 1 + ( p 2 + p 3 + p 4 ) · x 2 ≥ 2 p 1 + 2 p 2 + p 3 + 5 p 4 Dual Problem: Find the best such lower bound. 133

  5. More general minimize + · · · + ← z c 1 x 1 c n x n s.t. a 11 x 1 + · · · + a 1 n x n ≥ b 1 ← C 1 + · · · + ≥ ← C 2 a 21 x 1 a 2 n x n b 2 . . ... . . . . a m 1 x 1 + · · · + a mn x n ≥ b m ← C m x 1 , . . . , x n ≥ 0 Consider: p 1 C 1 + p 2 C 2 + · · · + p m C m Q: What are the conditions on p 1 , . . . , p m so that this combination lower bounds z ? a 11 p 1 + a 21 p 2 + · · · + a m 1 p m ≤ c 1 . . . . . . . . . . . ≤ . a 1 n p 1 + a 1 n p 2 + · · · + a mn p m ≤ c n p 1 , p 2 , . . . , p m ≥ 0 Q: What lower bound do we get? 134

  6. Primal and Dual LP Primal: Decision variables x 1 , . . . , x n . minimize c 1 x 1 + · · · + c n x n s.t. a 11 x 1 + · · · + a 1 n x n ≥ b 1 c T x min + · · · + ≥ a 21 x 1 a 2 n x n b 2 s.t. A x ≥ b . . ... . . . . ≥ 0 x a m 1 x 1 + · · · + a mn x n ≥ b m x 1 , . . . , x n ≥ 0 Dual: Decision variables p 1 , . . . , p m . maximize + · · · + b 1 p 1 b m p m s.t. a 11 p 1 + · · · + a m 1 p m ≤ c 1 b T p max + · · · + ≤ a 12 p 1 a m 2 p m c 2 A T p s.t. ≤ c . . ... . . . . p ≥ 0 a 1 n p 1 + · · · + a mn p m ≤ c n p 1 , . . . , p m ≥ 0 135

  7. Primal and Dual Example (1) Primal: min + 2 x 2 x 1 s.t. 2 x 1 + x 2 ≥ 7 − x 1 + 3 x 2 ≥ 1 x 1 + 4 x 2 ≥ 5 x 1 , x 2 ≥ 0 Dual: 136

  8. Primal and Dual Example (2) Primal: min − x 1 + 4 x 2 s.t. 3 x 1 + 2 x 2 ≥ 9 − 3 x 2 ≤ 3 x 1 x 1 , x 2 ≥ 0 Dual: 137

  9. Primal and Dual Example (3) Primal: min − x 1 + 4 x 2 s.t. 3 x 1 + 2 x 2 ≥ 9 − 3 x 2 = 3 x 1 x 1 , x 2 ≥ 0 Dual: 138

  10. Primal and Dual Linear Program Consider the general linear program: Obtain a lower bound: c T · x p T · b min max a i T · x ≥ b i s.t. p i ≥ 0 for i ∈ M 1 s.t. for i ∈ M 1 a i T · x ≤ b i p i ≤ 0 for i ∈ M 2 for i ∈ M 2 a i T · x = b i p i free for i ∈ M 3 for i ∈ M 3 A T j · p ≤ c j for j ∈ N 1 x j ≥ 0 for j ∈ N 1 A T j · p ≥ c j for j ∈ N 2 x j ≤ 0 for j ∈ N 2 A T x j free for j ∈ N 3 j · p = c j for j ∈ N 3 The linear program on the right hand side is the dual linear program of the primal linear program on the left hand side. 139

  11. Primal and Dual Variables and Constraints primal LP (minimize) dual LP (maximize) ≥ b i ≥ 0 constraints ≤ b i ≤ 0 variables = b i free ≥ 0 ≤ c i variables ≤ 0 ≥ c i constraints free = c i 140

  12. Examples primal LP dual LP p T · b max c T · x min A T · p s.t. = c s.t. A · x ≥ b p ≥ 0 c T · x min p T · b max s.t. A · x = b A T · p s.t. ≤ c x ≥ 0 141

  13. Basic Properties of the Dual Linear Program Theorem 4.1. The dual of the dual LP is the primal LP. Proof: Primal in general form: Dual: c T · x p T · b min max a i T · x ≥ b i s.t. p i ≥ 0 for i ∈ M 1 s.t. for i ∈ M 1 a i T · x ≤ b i p i ≤ 0 for i ∈ M 2 for i ∈ M 2 p i free for i ∈ M 3 a i T · x = b i for i ∈ M 3 A T j · p ≤ c j for j ∈ N 1 x j ≥ 0 for j ∈ N 1 A T j · p ≥ c j for j ∈ N 2 x j ≤ 0 for j ∈ N 2 A T x j free for j ∈ N 3 j · p = c j for j ∈ N 3 142

  14. Basic Properties of the Dual Linear Program Proof (cont.): Dual: Dual (in primal form): p T · b − p T · b max min s.t. p i ≥ 0 for i ∈ M 1 − A T s.t. j · p ≥ − c j for j ∈ N 1 p i ≤ 0 for i ∈ M 2 − A T j · p ≤ − c j for j ∈ N 2 p i free for i ∈ M 3 − A T j · p = − c j for j ∈ N 3 A T j · p ≤ c j for j ∈ N 1 p i ≥ 0 for i ∈ M 1 A T j · p ≥ c j for j ∈ N 2 p i ≤ 0 for i ∈ M 2 A T j · p = c j for j ∈ N 3 p i free for i ∈ M 3 143

  15. Basic Properties of the Dual Linear Program Proof (cont.): Dual (in primal form): Dual of Dual: − p T · b min − A T s.t. j · p ≥ − c j for j ∈ N 1 − A T j · p ≤ − c j for j ∈ N 2 − A T j · p = − c j for j ∈ N 3 p i ≥ 0 for i ∈ M 1 p i ≤ 0 for i ∈ M 2 p i free for i ∈ M 3 144

  16. Equavalence of the Dual LP Theorem 4.2. Let Π 1 and Π 2 be two LPs where Π 2 has been obtained from Π 1 by (several) transformations of the following type: i replace a free variable by the difference of two non-negative variables; ii introduce a slack variable in order to replace an inequality constraint by an equation; iii if some row of a feasible equality system is a linear combination of the other rows, eliminate this row. Then the dual of Π 1 is equivalent to the dual of Π 2 . 145

  17. Weak Duality Theorem Theorem 4.3. If x is a feasible solution to the primal LP (minimization problem) and p a feasible solution to the dual LP (maximization problem), then c T · x ≥ p T · b . Corollary 4.4. Consider a primal-dual pair of linear programs as above. a If the primal LP is unbounded (i. e., optimal cost = −∞ ), then the dual LP is infeasible. b If the dual LP is unbounded (i. e., optimal cost = ∞ ), then the primal LP is infeasible. c If x and p are feasible solutions to the primal and dual LP, resp., and if c T · x = p T · b , then x and p are optimal solutions. 146

  18. Strong Duality Theorem Theorem 4.5. If an LP has an optimal solution, so does its dual and the optimal costs are equal. 147

  19. Different Possibilities for Primal and Dual LP primal \ dual finite optimum unbounded infeasible finite optimum possible impossible impossible unbounded impossible impossible possible infeasible impossible possible possible Example of infeasible primal and dual LP: min x 1 + 2 x 2 max p 1 + 3 p 2 s.t. x 1 + x 2 = 1 s.t. p 1 + 2 p 2 = 1 2 x 1 + 2 x 2 = 3 p 1 + 2 p 2 = 2 148

  20. Complementary Slackness Consider the following pair of primal and dual LPs: c T · x p T · b min max p T · A = c T s.t. A · x ≥ b s.t. p ≥ 0 If x and p are feasible solutions, then c T · x = p T · A · x ≥ p T · b .Thus, c T · x = p T · b for all i : p i = 0 if a i T · x > b i . ⇐ ⇒ Theorem 4.6. Consider an arbitrary pair of primal and dual LPs. Let x and p be feasible solutions to the primal and dual LP, respectively. Then x and p are both optimal if and only if u i := p i ( a i T · x − b i ) = 0 for all i , (1) v j := ( c j − p T · A j ) x j = 0 for all j . (2) 149

  21. Complementary Slackness Example Consider the following LP in standard form and its dual: min 13 x 1 + 10 x 2 + 6 x 3 max 8 p 1 + 3 p 2 s.t. 5 x 1 + x 2 + 3 x 3 = 8 s.t. 5 p 1 + 3 p 2 ≤ 13 3 x 1 + = 3 p 1 + p 2 ≤ 10 x 2 x 1 , x 2 , x 3 ≥ 0 3 p 1 ≤ 6 Claim: x ∗ = ( 1 , 0 , 1 ) is a non-degenerate optimal solution to the primal. Verify this using complementary slackness! 150

  22. Geometric View Consider pair of primal and dual LPs with A ∈ R m × n and rank ( A ) = n : c T · x p T · b min max m � a i T · x ≥ b i , s.t. i = 1 , . . . , m s.t. p i · a i = c i = 1 p ≥ 0 Let I ⊆ { 1 , . . . , m } with | I | = n and a i , i ∈ I , linearly independent. a i T · x = b i , i ∈ I , has unique solution x I (basic solution) = ⇒ Let p ∈ R m (dual vector). Then x , p are optimal solutions if i a i T · x ≥ b i for all i (primal feasibility) ii p i = 0 for all i �∈ I (complementary slackness) iii � m i = 1 p i · a i = c (dual feasibility) iv p ≥ 0 (dual feasibility) (ii) and (iii) imply � i ∈ I p i · a i = c which has a unique solution p I . The a i , i ∈ I , form basis for dual LP and p I is corresponding basic solution. 151

  23. Geometric View (cont.) a 3 a 1 A a 5 a 2 a 4 a 1 B a 3 a 4 a 2 a 1 C c a 1 a 5 D a 1 152

  24. Dual Variables as Marginal Costs Consider the primal dual pair: c T · x p T · b min max p T · A ≤ c T s.t. A · x = b s.t. x ≥ 0 Let x ∗ be optimal basic feasible solution to primal LP with basis B , i. e., x ∗ B = B − 1 · b B > 0 (i. e., x ∗ non-degenerate). and assume that x ∗ Replace b by b + d . For small d , the basis B remains feasible and optimal: B − 1 · ( b + d ) = B − 1 · b + B − 1 · d ≥ 0 (feasibility) c T = c T − c BT · B − 1 · A ≥ 0 ¯ (optimality) Optimal cost of perturbed problem is c BT · B − 1 · ( b + d ) = c BT · x ∗ B + ( c BT · B − 1 ) · d � �� � = p T Thus, p i is the marginal cost per unit increase of b i . 153

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend