color superconductivity
play

COLOR SUPERCONDUCTIVITY Massimo Mannarelli INFN-LNGS - PowerPoint PPT Presentation

COLOR SUPERCONDUCTIVITY Massimo Mannarelli INFN-LNGS massimo@lngs.infn.it GGI-Firenze Sept. 2012 venerd 21 settembre 12 Compact Stars in the QCD Phase Diagram, Copenhagen August 2001 venerd 21 settembre 12 Outline Motivations


  1. COLOR SUPERCONDUCTIVITY Massimo Mannarelli INFN-LNGS massimo@lngs.infn.it GGI-Firenze Sept. 2012 venerdì 21 settembre 12

  2. “Compact Stars in the QCD Phase Diagram”, Copenhagen August 2001 venerdì 21 settembre 12

  3. Outline • Motivations • Superconductors • Color Superconductors • Low energy degrees of freedom • Crystalline color superconductors Reviews: hep-ph/0011333, hep-ph/0202037, 0709.4635 Lecture notes by Casalbuoni http://theory.fi.infn.it/casalbuoni/barcellona.pdf venerdì 21 settembre 12

  4. MOTIVATIONS venerdì 21 settembre 12

  5. QCD phase diagram T Quark Gluon Plasma (QGP) T c Hadronic Color ? Superconductor (CSC) µ venerdì 21 settembre 12

  6. QCD phase diagram T Quark Gluon Plasma (QGP) T c Hadronic Color ? Superconductor (CSC) µ venerdì 21 settembre 12

  7. QCD phase diagram T Quark Gluon Plasma (QGP) T c Hadronic Color ? Superconductor (CSC) µ venerdì 21 settembre 12

  8. QCD phase diagram T Quark Gluon Plasma (QGP) T c Hadronic Color ? Superconductor (CSC) µ Compact stars venerdì 21 settembre 12

  9. QCD phase diagram T Quark Gluon Plasma (QGP) T c Hadronic Color ? Superconductor (CSC) µ Compact stars Warning : QCD is perturbative only at asymptotic energy scales venerdì 21 settembre 12

  10. QCD phase diagram T Quark Gluon Plasma (QGP) T c Hadronic Color ? Superconductor (CSC) µ Compact stars Warning : QCD is perturbative only at asymptotic energy scales EMULATION HOT MATTER ENERGY-SCAN Ultracold fermionic RHIC RHIC EXPERIMENTS atoms LHC NA61/SHINE@CERN-SPS CBM@FAIR/GSI MPD@NICA/JINR venerdì 21 settembre 12

  11. Compact stars t r ad i t i ona l neu t r on s t a r qua r k − hyb r i d s t a r N + e N + e + n n , p , e , µ n s u hype r on o n d u p c c e t neu t r on s t a r w i t h r i s t a r r e n f l p g u p i on condensa t e i u d n , p , e , µ p s r u,d,s o quarks t � , � , � , � 2SC o n � CFL � s H c r us t F e K � color − superconducting 10 6 g / c m 3 strange quark matter (u,d,s quarks) 10 11 g / c m 3 2SC CFL g / c m 3 10 14 CSL CFL − K + gCFL CFL − K0 LOFF 0 Hydrogen/He � CFL − atmosphere s t r ange s t a r nuc l eon s t a r F. Weber, Prog.Part.Nucl.Phys. 54 (2005) 193 R ~ 10 km venerdì 21 settembre 12

  12. Compact stars t r ad i t i ona l neu t r on s t a r qua r k − hyb r i d s t a r “Probes” N + e N + e + n cooling n , p , e , µ n glitches s u hype r on o n d u p c c e t neu t r on s t a r w i t h r i s t a r r e n f l p g u p i on condensa t e instabilities i u d n , p , e , µ p s r u,d,s o mass-radius quarks t � , � , � , � 2SC o n � CFL magnetic field � s H c r us t F e GW K � color − superconducting 10 6 g / c m 3 strange quark matter ...... (u,d,s quarks) 10 11 g / c m 3 2SC CFL g / c m 3 10 14 CSL CFL − K + gCFL CFL − K0 LOFF 0 Hydrogen/He � CFL − atmosphere s t r ange s t a r nuc l eon s t a r F. Weber, Prog.Part.Nucl.Phys. 54 (2005) 193 R ~ 10 km venerdì 21 settembre 12

  13. Compact stars t r ad i t i ona l neu t r on s t a r qua r k − hyb r i d s t a r “Probes” N + e N + e + n cooling n , p , e , µ n glitches s u hype r on o n d u p c c e t neu t r on s t a r w i t h r i s t a r r e n f l p g u p i on condensa t e instabilities i u d n , p , e , µ p s r u,d,s o mass-radius quarks t � , � , � , � 2SC o n � CFL magnetic field � s H c r us t F e GW K � color − superconducting 10 6 g / c m 3 strange quark matter ...... (u,d,s quarks) 10 11 g / c m 3 2SC CFL g / c m 3 10 14 CSL CFL − K + gCFL CFL − K0 LOFF 0 Hydrogen/He � CFL − atmosphere s t r ange s t a r nuc l eon s t a r F. Weber, Prog.Part.Nucl.Phys. 54 (2005) 193 R ~ 10 km Example PSR J1614-2230 mass M ~ 2 M ⊙ Demorest et al Nature 467, (2010) 1081 hard to explain with quark matter models Bombaci et al. Phys. Rev. C 85, (2012) 55807 venerdì 21 settembre 12

  14. SUPERCONDUCTORS In 1911, H.K. Onnes, cooling mercury, found almost no resistivity at T = 4.2 K. arbitrary units C V ~ e -D ê T C V ~ T R ~ T 3 T 0.0 0.5 1.0 1.5 2.0 2.5 3.0 T c venerdì 21 settembre 12

  15. Superconductivity is a quantum phenomenon at the macroscopic scale venerdì 21 settembre 12

  16. Superconductivity is a quantum phenomenon at the macroscopic scale T=0 BOSONS Bosons occupy the same quantum state: They “like” to move together, no dissipation 4 He becomes superfluid at T ≃ 2.17 K, Kapitsa et al (1938) BEC venerdì 21 settembre 12

  17. Superconductivity is a quantum phenomenon at the macroscopic scale T=0 BOSONS FERMIONS Fermions cannot occupy the same Bosons occupy the same quantum quantum state. A different theory of state: They “like” to move together, superfluidity no dissipation 3 He becomes superfluid at 4 He becomes superfluid at T ≃ 0.0025 K, Osheroff (1971) T ≃ 2.17 K, Kapitsa et al (1938) BEC BCS venerdì 21 settembre 12

  18. Superconductivity is a quantum phenomenon at the macroscopic scale T=0 BOSONS FERMIONS Fermions cannot occupy the same Bosons occupy the same quantum quantum state. A different theory of state: They “like” to move together, superfluidity no dissipation 3 He becomes superfluid at 4 He becomes superfluid at T ≃ 0.0025 K, Osheroff (1971) T ≃ 2.17 K, Kapitsa et al (1938) BEC BCS venerdì 21 settembre 12

  19. Superconductivity is a quantum phenomenon at the macroscopic scale T=0 BOSONS FERMIONS Fermions cannot occupy the same Bosons occupy the same quantum quantum state. A different theory of state: They “like” to move together, superfluidity no dissipation 3 He becomes superfluid at 4 He becomes superfluid at T ≃ 0.0025 K, Osheroff (1971) T ≃ 2.17 K, Kapitsa et al (1938) BEC BCS ? venerdì 21 settembre 12

  20. BCS Theory Bardeen-Cooper-Schrieffer (BCS) in 1957 proposed a microscopic theory of fermionic superfluidity Fermi sphere “active” T=0 fermions P F “frozen” fermions venerdì 21 settembre 12

  21. BCS Theory Bardeen-Cooper-Schrieffer (BCS) in 1957 proposed a microscopic theory of fermionic superfluidity Fermi sphere “active” T=0 fermions P F “frozen” fermions Cooper pairing : Any attractive interaction produces correlated pairs of “active” fermions Cooper pairs effectively behave as bosons and condense venerdì 21 settembre 12

  22. BCS Theory Bardeen-Cooper-Schrieffer (BCS) in 1957 proposed a microscopic theory of fermionic superfluidity Fermi sphere “active” T=0 fermions P F “frozen” fermions Cooper pairing : Any attractive interaction produces correlated pairs of “active” fermions Cooper pairs effectively behave as bosons and condense It costs energy to break a Cooper pair ( ✏ ( p ) − µ ) 2 + ∆ ( p, T ) 2 p E ( p ) = quasiparticle dispersion law: venerdì 21 settembre 12

  23. BCS Theory Bardeen-Cooper-Schrieffer (BCS) in 1957 proposed a microscopic theory of fermionic superfluidity Fermi sphere “active” T=0 fermions P F “frozen” fermions Cooper pairing : Any attractive interaction produces correlated pairs of “active” fermions Cooper pairs effectively behave as bosons and condense It costs energy to break a Cooper pair ( ✏ ( p ) − µ ) 2 + ∆ ( p, T ) 2 p E ( p ) = quasiparticle dispersion law: Increasing the temperature the coherence is lost at T c ' 0 . 3 ∆ 0 venerdì 21 settembre 12

  24. Superfluid vs Superconductors Definitions Superfluid: frictionless fluid with potential flow v = 힩 ϕ . Irrotational: 힩 × v = 0 Superconductor: perfect diamagnet (Meissner effect) Cooper pairing is at the basis of both phenomena (for fermions) venerdì 21 settembre 12

  25. Superfluid vs Superconductors Definitions Superfluid: frictionless fluid with potential flow v = 힩 ϕ . Irrotational: 힩 × v = 0 Superconductor: perfect diamagnet (Meissner effect) Cooper pairing is at the basis of both phenomena (for fermions) Superfluid Broken global symmetry Transport of the quantum numbers Goldstone boson ϕ of the broken group with (basically) no dissipation v = 힩 ϕ venerdì 21 settembre 12

  26. Superfluid vs Superconductors Definitions Superfluid: frictionless fluid with potential flow v = 힩 ϕ . Irrotational: 힩 × v = 0 Superconductor: perfect diamagnet (Meissner effect) Cooper pairing is at the basis of both phenomena (for fermions) Superfluid Broken global symmetry Transport of the quantum numbers Goldstone boson ϕ of the broken group with (basically) no dissipation v = 힩 ϕ Superconductor Broken gauge symmetry Broken gauge fields with mass, M, Higgs mechanism penetrates for a length λ ∝ 1 /M venerdì 21 settembre 12

  27. BCS-BEC crossover correlation length ξ ∼ v F ∆ vs average distance n − 1 / 3 up down BCS ξ � n − 1 / 3 fermi surface phenomenon venerdì 21 settembre 12

  28. BCS-BEC crossover correlation length ξ ∼ v F ∆ vs average distance n − 1 / 3 up down g weak BCS ξ � n − 1 / 3 fermi surface phenomenon strong venerdì 21 settembre 12

  29. BCS-BEC crossover correlation length ξ ∼ v F ∆ vs average distance n − 1 / 3 up down g weak BCS ξ � n − 1 / 3 fermi surface phenomenon BCS-BEC crossover ξ ∼ n − 1 / 3 depleting the Fermi sphere strong venerdì 21 settembre 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend