collective properties of stable even even cd isotopes
play

Collective properties of stable even-even Cd isotopes ochniak 1 , Ph. - PowerPoint PPT Presentation

Collective properties of stable even-even Cd isotopes ochniak 1 , Ph. Quentin 2 & M. Imadalou 3 L. Pr 1 Maria Curie-Skodowska University, Lublin 2 CEN Bordeaux-Gradignan 3 Ecole Normale Sup erieure, Kouba, Alger 18th NPW, Kazimierz,


  1. Collective properties of stable even-even Cd isotopes ochniak 1 , Ph. Quentin 2 & M. Imadalou 3 L. Pr´ 1 Maria Curie-Skłodowska University, Lublin 2 CEN Bordeaux-Gradignan 3 Ecole Normale Sup´ erieure, Kouba, Alger 18th NPW, Kazimierz, Sept 2011 1 /15

  2. Motivation 1. Vibrations, rotations or something more general? On the robustness of surface vibrational modes: case studies in the Cd region P .E. Garrett and J. L. Wood, J.Phys.G: Nucl.Part.Phys. 37 064028, 2010 18th NPW, Kazimierz, Sept 2011 2 /15

  3. Motivation cont. 2. Treatment of pairing and particle number conservation, going beyond BCS? Mass parameters for large amplitude collective motion: A perturbative microscopic approach E.Kh. Yuldashbaeva, J. Libert, P . Quentin, M. Girod, Phys. Lett. B 461 1 (1999). 18th NPW, Kazimierz, Sept 2011 3 /15

  4. The Bohr Hamiltonian Hamiltonian H GBH ( β, γ, Ω ) = T vib + T rot + V � r � r � 1 1 � � � � � � β 4 β 3 T vib ( β, γ ) = − ∂ β wB γγ ∂ β − ∂ β wB βγ ∂ γ + 2 √ wr β 4 � � r � � r �� 1 ∂ β + 1 � � � − ∂ γ w sin3 γ B βγ β∂ γ w sin3 γ B ββ ∂ γ + β sin3 γ 3 1 � J k ( β, γ ) = 4 B k ( β, γ ) β 2 sin 2 ( γ − 2 π k / 3) I 2 T rot ( β, γ, Ω ) = k ( Ω ) / J k ; 2 k = 1 w = B ββ B γγ − B 2 βγ ; r = B x B y B z Collective variables β , γ , Euler angles Ω q 0 = � Q 0 � = � � A i 3 z 2 i − r 2 β cos γ = Dq 0 , i � √ q 2 = � Q 2 � = � � A i x 2 i − y 2 β sin γ = 3 Dq 2 , i � D = √ π/ 5 / Ar 2 , r 2 = 3 5 ( r 0 A 1 / 3 ) 2 , r 0 = 1 . 2 fm 18th NPW, Kazimierz, Sept 2011 4 /15

  5. Microscopic formulas from the ATDHFB theory Simplest (most approximate) version Vibrational mass parameters for constrained HFB calculations B kj = � 2 � � M − 1 (1) M (3) M − 1 (1) 2 kj � µ | Q k | ν �� ν | Q j | µ � � ( u µ v ν + u ν v µ ) 2 M ( n ) , kj = ( E µ + E ν ) n µ,ν B kj −→ B ββ , B βγ , B γγ Moments of inertia |� µ | j k | ν �| 2 J k = 2 � 2 � ( u µ v ν − u ν v µ ) 2 E µ + E ν µ,ν Thouless-Valatin correction, factor 1.3 18th NPW, Kazimierz, Sept 2011 5 /15

  6. Microscopic calculations Even-even 106 − 116 Cd isotopes The Skyrme interaction, SIII parameters Seniority (constant G ) pairing interaction Two variants of the pairing strength ( g i = G i / (11 + N i ) , i = n , p ) G n G p old 17.1 16.5 new 16.1 17.5 � ( e i − λ ) 2 + ∆ 2 E qp = min Experimental gap from the 5-point mass formula 18th NPW, Kazimierz, Sept 2011 6 /15

  7. 7 /15 30 25 20 15 10 5 0 30 25 20 15 10 5 0 ] ] V V e e M M [ 0˚ 0˚ 0˚ [ 0˚ 0˚ 0˚ V 10˚ 10˚ 10˚ V 10˚ 10˚ 10˚ γ 20˚ 20˚ 20˚ γ 20˚ 20˚ 20˚ 0 0 0 . . . 7 7 7 0 0 0 . . . 7 7 7 ˚ ˚ ˚ ˚ ˚ ˚ 0 0 0 0 0 0 3 3 3 3 3 3 40˚ 40˚ 40˚ 40˚ 40˚ 40˚ 0 0 0 . . . 6 6 6 0 0 0 . . . 6 6 6 50˚ 50˚ 50˚ 50˚ 50˚ 50˚ n 0 0 0 . . . 5 5 5 n 0 0 0 . . . 5 5 5 e e s s ˚ ˚ ˚ ˚ ˚ ˚ 0 0 0 0 0 0 . . . 4 4 4 0 0 0 0 0 0 . . . 4 4 4 6 6 6 6 6 6 , , I β I β I I I 0 0 0 . . . 3 3 3 I 0 0 0 . . . 3 3 3 S S , 0 0 0 . . . 2 2 2 , 0 0 0 . . . 2 2 2 d d C C 0 0 0 . . . 1 1 1 0 0 0 . . . 1 1 1 0 6 1 1 1 1 0 0 0 0 0 0 18th NPW, Kazimierz, Sept 2011 30 25 20 15 10 5 0 30 25 20 15 10 5 0 ] ] V V e e M M [ [ 0˚ 0˚ 0˚ 0˚ 0˚ 0˚ V 10˚ 10˚ 10˚ V 10˚ 10˚ 10˚ γ 20˚ 20˚ 20˚ γ 20˚ 20˚ 20˚ 0 0 0 . . . 7 7 7 0 0 0 . . . 7 7 7 ˚ ˚ ˚ ˚ ˚ ˚ 0 0 0 0 0 0 3 3 3 3 3 3 40˚ 40˚ 40˚ 40˚ 40˚ 40˚ 0 0 0 . . . 6 6 6 0 0 0 . . . 6 6 6 50˚ 50˚ 50˚ 50˚ 50˚ 50˚ n 0 0 0 . . . 5 5 5 n 0 0 0 . . . 5 5 5 e e s s ˚ ˚ ˚ 0 0 0 . . . 4 4 4 ˚ ˚ ˚ 0 0 0 . . . 4 4 4 0 0 0 0 0 0 , 6 6 6 , 6 6 6 β β I I I I . . . 3 3 3 . . . 3 3 3 β = 0 . 7 → q 0 ≈ 19 . 3 b ( A = 110 ) I 0 0 0 I 0 0 0 S S , , 0 0 0 . . . 2 2 2 0 0 0 . . . 2 2 2 d d C C 0 0 0 . . . 1 1 1 0 0 0 . . . 1 1 1 8 4 0 1 1 1 0 0 0 0 0 0 106 − 116 Cd, Potential energy 30 25 20 15 10 5 0 30 25 20 15 10 5 0 ] ] V V e e M M [ 0˚ 0˚ 0˚ [ 0˚ 0˚ 0˚ V V 10˚ 10˚ 10˚ 10˚ 10˚ 10˚ γ 20˚ 20˚ 20˚ γ 20˚ 20˚ 20˚ 0 0 0 . . . 7 7 7 0 0 0 . . . 7 7 7 0 0 0 ˚ ˚ ˚ 0 0 0 ˚ ˚ ˚ 3 3 3 3 3 3 40˚ 40˚ 40˚ 0 0 0 . . . 6 6 6 40˚ 40˚ 40˚ 0 0 0 . . . 6 6 6 50˚ 50˚ 50˚ 50˚ 50˚ 50˚ n 0 0 0 . . . 5 5 5 n 0 0 0 . . . 5 5 5 e e s ˚ ˚ ˚ s ˚ ˚ ˚ 0 0 0 . . . 4 4 4 0 0 0 . . . 4 4 4 0 0 0 0 0 0 , 6 6 6 , 6 6 6 β β I I I I 0 0 0 . . . 3 3 3 0 0 0 . . . 3 3 3 I I S S , 0 0 0 . . . 2 2 2 , 0 0 0 . . . 2 2 2 d d C C 0 0 0 . . . 1 1 1 0 0 0 . . . 1 1 1 6 2 0 1 1 1 0 0 0 0 0 0

  8. 106 − 116 Cd, energy levels 18th NPW, Kazimierz, Sept 2011 8 /15

  9. 106 − 116 Cd, energy levels, cont Two variants of pairing 18th NPW, Kazimierz, Sept 2011 9 /15

  10. 106 − 116 Cd, B(E2) transition probabilities . . → → . . . . . . . . . . . . . . → → . . . . . . . . . → . . . . . . 18th NPW, Kazimierz, Sept 2011 10 /15

  11. 11 /15 B ββ = B γγ = B k = B , . . . . . . SKE -0.514 0.259 -0.591 B βγ = 0 . . . SKE . . . micr -0.480 0.213 -0.220 18th NPW, Kazimierz, Sept 2011 . . . Diagonal matrix elements of the Q el operator 2 1 2 2 2 3 10˚ 10˚ 0˚ 0˚ 0 0 ˚ ˚ 2 2 0 0 . . 7 7 . . . ˚ ˚ 0 0 3 3 40˚ 40˚ 0 0 . . 6 6 80 50˚ 50˚ 0 0 . . 5 5 40 80 ˚ ˚ 0 0 0 0 . . 4 4 6 6 40 80 0 0 . . 3 3 80 0 0 . . 2 2 0 0 . . 1 1 γ γ B 0 0 10˚ 10˚ 0˚ 0˚ ˚ ˚ 2 2 0 0 0 0 . . 7 7 ˚ ˚ 0 0 3 3 40˚ 40˚ 0 0 . . 6 6 50˚ 50˚ 20 0 0 . . 5 5 � i || Q el || i � [eb] for 2 1 , 2 , 3 levels ˚ ˚ 0 0 0 0 . . 4 4 20 6 6 20 0 0 . . 3 3 0 0 . . 2 2 0 0 . . 1 1 γ β 0˚ 0˚ 0˚ B 10˚ 10˚ 10˚ 0 0 20˚ 20˚ 20˚ 0 0 0 . . . 7 7 7 10˚ 10˚ 0˚ 0˚ ˚ ˚ ˚ 0 0 0 ˚ ˚ 3 3 3 2 2 0 0 0 0 . . 7 7 0 0 ˚ ˚ 40˚ 40˚ 40˚ 0 0 0 . . . 6 6 6 3 3 40˚ 40˚ 0 0 . . 6 6 50˚ 50˚ 50˚ 0 0 0 . . . 5 5 5 80 50˚ 50˚ 0 0 . . 5 5 120 ˚ ˚ ˚ 0 0 0 0 0 0 . . . 4 4 4 6 6 6 ˚ ˚ 0 0 . . 4 4 0 0 6 6 160 0 0 0 . . . 3 3 3 80 Test case 0 0 . . 3 3 ] V 0 0 0 . . . 2 2 2 micr 0 0 . . 2 2 e M 0 0 0 . . . 1 1 1 0 0 . . 1 1 β [ β B V 0 0 0 0 0

  12. Higher Tamm-Dancoff Approximation 1. Mean-field (HF+BCS) calculations −→ one particle basis 2. Many-particle basis built from m particle-hole states (for protons and neutrons) 3. Diagonalization of the δ residual interaction in the many-particle basis States with a good particle number Density matrix ρ ii = � Φ | a + i a i | Φ � −→ v 2 i Sum � i u i v i for the HF+BCS solution 1 1 0 S I I I , s e n C d , 1 1 0 I , s e n o t C d , S I I Σ u v , p r i i 6 6 6 6 Σ u v , p r o t 0 0 0 0 ˚ ˚ ˚ ˚ i i 50˚ 50˚ 10 50˚ 50˚ 10 40˚ 40˚ 40˚ 40˚ γ γ 3 3 3 3 0 0 0 0 ˚ ˚ ˚ ˚ 20˚ 20˚ 5 20˚ 20˚ 5 10˚ 10˚ 10˚ 10˚ 0˚ 0˚ 0 0˚ 0˚ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . . . . . . . . . . 1 1 2 2 3 3 4 4 5 5 6 6 . . . . . . . . . . . . . . 1 1 2 2 3 3 4 4 5 5 6 6 7 7 β β 18th NPW, Kazimierz, Sept 2011 12 /15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend