coherent incoherent transitions in resonant energy
play

Coherent - incoherent transitions in resonant energy transfer - PowerPoint PPT Presentation

Coherent - incoherent transitions in resonant energy transfer dynamics Ahsan Nazir EPSRC Postdoctoral Fellow, University College London Centre for Quantum Dynamics, Griffith University, Australia AN, arXiv:0906.0592 Outline Explore


  1. Coherent - incoherent transitions in resonant energy transfer dynamics Ahsan Nazir EPSRC Postdoctoral Fellow, University College London Centre for Quantum Dynamics, Griffith University, Australia AN, arXiv:0906.0592

  2. Outline • Explore criteria for coherent or incoherent energy transfer in a donor-acceptor pair, beyond weak system-bath coupling • Analytical theory: polaron transformation + time-local master equation • Crossover from coherent to incoherent dynamics with increasing temperature: multi-phonon dephasing effects begin to dominate • Crossover temp. T c displays pronounced dependence on the degree of correlation between fluctuations at donor and acceptor sites • Strong correlations suppression of multi-phonon processes: coherent dynamics can then survive at elevated temperatures

  3. Motivation - Quantum dots • See also Crooker et al. PRL 89, 186802 (2002), and Kagan et al. PRB 54, 8633 (1996) Incoherent transfer Weak exciton-phonon coupling

  4. Motivation • Energy transfer is ubiquitous • Experimental observation of QDs: B. D. Gerardot et al., Phys. Rev. Lett. 95, 137403 (2005) coherent effects • Conditions for coherent or incoherent transfer? Conjugated Polymers: E. Collini and G. D. Scholes, Science 323, 369 (2009) • How can coherence survive at elevated temperatures? LH1-RC: Fig. courtesy of A. Olaya-Castro • Can we understand observed dynamics from simple models? FMO: Fig. courtesy of Y.-C. Cheng and G. R. Fleming, Annu. Rev. Phys. Chem. 60, 241 (2009) , G. S. Engel et al., Nature 446, 782 (2007)

  5. Model • Non-perturbative in donor- acceptor electronic couplings Donor Acceptor g 1 g 2 • Weak - strong system bath | X � | X � V ǫ 2 ǫ 1 coupling (single to multi- | 0 � | 0 � phonon effects) d Environment • Low - high temperatures � ω k b † H = ǫ 1 | X � 1 � X | + ǫ 2 | X � 2 � X | + V ( | 0 X �� X 0 | + | X 0 �� 0 X | ) + k b k • Correlated - uncorrelated k � ( g k, 1 b † � ( g k, 2 b † dephasing fluctuations + | X � 1 � X | k + g ∗ k, 1 b k ) + | X � 2 � X | k + g ∗ k, b k ) k k • Polaron transformation g k, 1 = | g k | e i k · d / 2 g k, 2 = | g k | e − i k · d / 2

  6. Previous work Foerster - Dexter: Strong system-bath coupling, weak donor-acceptor interactions Extended to consider coherence effects within donors and acceptors Weak system-bath coupling: Coherence in Photosynthetic networks investigated using Lindblad master equations

  7. Previous works (II) Modified Redfield treatment Non-Markovian dynamics Polaron transformation: Interpolates weak to strong system bath interactions

  8. Model Hamiltonian • Single excitation subspace, map to a 2-level system Effective 2LS ω k b † � g 1 − g 2 H sub = ǫ 1 | 0 �� 0 | + ǫ 2 | 1 �� 1 | + V ( | 1 �� 0 | + | 0 �� 1 | ) + k b k | 1 � k | 0 X � � � � ( g k, 1 − g k, 2 ) b † +( | 0 �� 0 | − | 1 �� 1 | ) k + ( g k, 1 − g k, 2 ) ∗ b k V | 0 � | X 0 � k • Polaron transformation Environment e ± s = | X 0 �� X 0 | Π k D ( g k, 1 / ω k ) + | 0 X �� 0 X | Π k D ( g k, 2 / ω k ) Effective spectral density H P = e s He − s = ǫ ω k b † � 2 σ z + V R σ x + k b k + V ( σ x B x + σ y B y ) F 1 D ( ω , d ) = cos ( ω d/c ) J � Ω �� 1 � F � Ω ,d �� � ps � 1 � k 8 F 2 D ( ω , d ) = J 0 ( ω d/c ) 6 F 3 D ( ω , d ) = sinc( ω d/c ) 4 • Bath-renormalised interaction 2 R ∞ d ω J ( ω ) ω 2 (1 − F ( ω ,d )) coth ω / 2 k B T V 0 V R = BV = e − 0 0 5 10 15 20 Ω � ps � J ( ω ) = αω 3 e − ( ω / ω c ) 2

  9. Master equation • Treat fluctuations to second order: Born-Markov approximation 2[ σ z , ρ ] − V 2 ρ = − i η � (( γ l ( ω ′ ) + 2 iS l ( ω ′ ))[ P l ( ω ) , P l ( ω ′ ) ρ ] + H.c. ) ˙ 2 l, ω , ω ′ � ω , ω ′ ∈ { 0 , ± η } ǫ 2 + 4 V 2 η = R 0.5 • Rates are FTs of bath correlation functions � � 0 0.0 0 20 � ∞ 10 γ x/y ( ω ) = e ω /k B T d τ e i ωτ Λ x/y ( τ ) 5 0 x Τ � � 10 −∞ 10 � 20 � ∞ d ω J ( ω ) cos ωτ • In terms of phonon propagator ϕ ( τ ) = 2 ¯ ω 2 (1 − F ( ω , d )) sinh ( ω / 2 k B T ) 0 Λ x ( τ ) = B 2 Λ y ( τ ) = B 2 ϕ ( τ ) + e − ¯ 2 ( e ¯ ϕ ( τ ) − 2) , 2 ( e ¯ ϕ ( τ ) − e − ¯ ϕ ( τ ) )

  10. Resonant dynamics • Initialise in donor, look at � � 2 + ( Γ 2 − Γ 1 ) cos ξ t sin ξ t � σ z � t = e − ( Γ 1 + Γ 2 ) t/ 2 subsequent excitation 2 ξ dynamics � � 2 γ x (0) + γ y (2 V R )(1 + 2 N (2 V R )) ǫ = 0 Γ 1 = V 2 Γ 2 = 2 V 2 γ x (0) , , (1 + N (2 V R )) N ( ω ) = ( e ω /k B T − 1) − 1 • Coherent or incoherent � 16 V 2 R − ( Γ 1 − Γ 2 ) 2 ξ ≈ dynamics possible 1.0 1.0 1.0 0.5 0.5 0.5 �Σ z � t �Σ z � t �Σ z � t 0.0 0.0 0.0 � 0.5 � 0.5 � 0.5 � 1.0 � 1.0 � 1.0 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 t t t 4 V R > ( Γ 1 − Γ 2 ) → ξ real 4 V R = ( Γ 1 − Γ 2 ) → ξ = 0 4 V R < ( Γ 1 − Γ 2 ) → ξ imaginary Coherent Crossover Incoherent

  11. Weak coupling - coherent 1.0 • Expand bath correlation functions to first order in to get single-phonon rates 0.5 ϕ ( τ ) ¯ �Σ z � t 0.0 B 2 ¯ Λ y ( τ ) ≈ ˜ Λ x ( τ ) ≈ 0 , ϕ ( τ ) � 0.5 � 1.0 0 50 100 150 200 • Damped oscillations t � σ z � t = e − ˜ Γ 1 t/ 2 [cos (˜ ξ t/ 2) − (˜ Γ 1 / ˜ ξ ) sin (˜ ξ t/ 2)] 0.04 1D 2D 0.03 � • is real ˜ 16 ˜ R − ˜ V 2 Γ 2 ξ = 1 � ps � 1 � 1 0.02 3D � � 0.01 • Damping consistent with a weak- 0.00 coupling treatment 0 5 10 15 20 25 d � nm � Γ 1 = π J (2 ˜ ˜ V R )(1 − F (2 ˜ V R , d )) coth ( ˜ V R /k B T )

  12. When are single phonon rates valid? • Example: consider a particular spectral density 0.5 � J ( ω ) = αω 3 0.0 � 0 0 20 10 • This leads to: 5 0 x Τ � � 10 10 � 20 � sech 2 τ ′ − tanh ( x − τ ′ ) + tanh ( x + τ ′ ) � ϕ ( τ ′ ) = ϕ 0 ¯ 0.0020 � � 1 �� 2 �� 2 � arb. units � 2 x 0.0015 T d small • Two important temperature scales: 0.0010 0.0005 B T 2 = T 2 /T 2 ϕ 0 = 2 π 2 α k 2 0 , 0.0000 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 x = π k B Td/c = T/T d T � T 0 • Weak fluctuation correlations 0.0005 � � 1 �� 2 �� 2 � arb. units � 0.0004 T d large x ≫ 1( T ≫ T d ) → ϕ 0 ≪ 1 0.0003 • Strong fluctuation correlations 0.0002 0.0001 x ≪ 1( T ≪ T d ) → ϕ 0 x 2 ≪ 1 0.0000 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 T � T 0

  13. Incoherent - High temperature, multi-phonon 1.0 • Estimate rates by saddle-point 0.5 approximation (essentially �Σ z � t expand about ) 0.0 ϕ ( τ ) ¯ τ = 0 � 0.5 0 e 2 ϕ 0 / 3 e ϕ 0 (2 x csch2 x − 1) /x 2 Γ 1 ≈ 2 Γ 2 ≈ 2 β V 2 F B 2 � 1.0 0 50 100 150 200 � πϕ 0 ( x − sech 2 x tanh x ) /x t • For high enough temperature 10 we have incoherent transfer saddle point � � 1 �� 2 �� 2 � arb. units � 1 � 0.1 1 / 4 ≈ i Γ 1 / 2 → � σ z � t ≈ e − Γ 1 t 16 V 2 R − Γ 2 ξ ≈ full 0.01 0.001 weak • Considering multi-phonon 10 � 4 processes gives rise to a 0 1 2 3 4 5 6 7 T � T 0 destruction of coherent effects

  14. Crossover • Crossover generally occurs in 4 the high temperature regime. 4 V R 3 2 • Simplified condition: 8 V R = Γ 1 1 Γ 1 − Γ 2 8 V R > Γ 1 → coherent 0 8 V R < Γ 1 → incoherent 0 2 4 6 8 T � T 0 Strong correlation • Critical temperature T c 10 8 weak V F B 0 e 5 ϕ c / 6 e ϕ c (coth x c − 2 tanh x c − 1 /x c ) / 2 x c T 2 c = T 0 , 6 correlation T c � T 0 � π ( x c − sech 2 x c tanh x c ) /x c 4 k B 4 2 ϕ c = T 2 c /T 2 x c = T c /T d 0 , 0 0 1 2 3 4 • Strong correlations suppress d � d 0 � T 0 � T d multi-phonon effects

  15. Far off-resonance • Pairs of QDs not usually naturally resonant V/ ǫ ≪ 1 QDs: B. D. Gerardot et al., Phys. Rev. Lett. 95, 137403 (2005) • Expand to 2nd order in V/ ǫ � σ z � t ≈ e − Γ t − (1 − e − Γ t ) tanh ( βǫ / 2) • Incoherent transfer from donor to acceptor, as expected Γ = V 2 (1 + 2 N ( ǫ )) (1 + N ( ǫ )) ( γ x ( ǫ ) + γ y ( ǫ )) • Weak coupling (single-phonon): Γ ≈ (4 π ˜ ˜ V 2 R / ǫ 2 ) J ( ǫ )(1 − F ( ǫ , d )) coth ( βǫ / 2) comparison with Rozbicki and Machnikoski 0.01 � Inc � arb. units � 0.001 10 � 4 • High-temperature: � σ z � t ≈ e − Γ t 10 � 5 10 � 6 0.0 0.5 1.0 1.5 2.0 2.5 T � T 0

  16. Summary and further work (AN, arXiv0906.0592) • Explored criteria for coherent or incoherent energy transfer in a donor- acceptor pair, beyond weak system-bath coupling • Crossover from coherent to incoherent dynamics with increasing temperature: multi-phonon dephasing effects begin to dominate • Crossover temp. T c displays pronounced dependence on the degree of correlation between fluctuations at donor and acceptor sites • Applications to real systems, in particular biological systems? • Non-Markovian and initial state preparation effects (see S. Jang et al., J. Chem. Phys. 129, 101104 (2008))

  17. Acknowledgements • Many thanks to: • Funding • Alexandra Olaya-Castro (UCL) • Tom Stace (UQ) • Marshall Stoneham (UCL) • Pawel Machnikowski (WUT) • Howard Wiseman (GU)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend