coherent bayesian inference on compact binary inspirals
play

Coherent Bayesian inference on compact binary inspirals using a - PowerPoint PPT Presentation

Coherent Bayesian inference on compact binary inspirals using a network of interferometric gravitational wave detectors over 1 , Renate Meyer 1 , and Nelson Christensen 2 Christian R 1 The University of Auckland Auckland, New Zealand 2


  1. Coherent Bayesian inference on compact binary inspirals using a network of interferometric gravitational wave detectors over 1 , Renate Meyer 1 , and Nelson Christensen 2 Christian R¨ 1 The University of Auckland Auckland, New Zealand 2 Carleton College Northfield, MN, U.S.A.

  2. Overview: 1. gravitational waves 2. measuring gravitational waves 3. the binary inspiral signal 4. prior & model 5. MCMC details 6. example application C. R¨ over, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals... 1

  3. Gravitational waves • general relativity: space-time curved by masses • implication: existence of gravitational waves (pointed out in 1916) • existence proven in 1979 • measurement attempted since 1960s • no direct measurement yet C. R¨ over, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals... 2

  4. Gravitational waves • very weak effect • emitted by rapid ly moving, heavy objects • event candidates: – supernovae – big bang – binary star systems – . . . C. R¨ over, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals... 3

  5. C. R¨ over, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals... 4

  6. C. R¨ over, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals... 5

  7. time C. R¨ over, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals... 6

  8. ‘‘plus’’ ( + ) time ‘‘cross’’ ( × ) C. R¨ over, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals... 7

  9. time C. R¨ over, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals... 8

  10. C. R¨ over, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals... 9

  11. C. R¨ over, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals... 10

  12. C. R¨ over, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals... 11

  13. Hanford, WA Pisa, Italy Livingston, LA Hannover, Germany C. R¨ over, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals... 12

  14. Measuring gravitational waves • laser interferometry • output: a time series • problems: signal detection, parameter estimation , . . . C. R¨ over, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals... 13

  15. Binary inspiral events • binary star system, orbiting around their barycentre • energy is radiated in the form of gravitational waves • orbits shrink, rotation accelerates • → “chirping” GW signal (increasing frequency and amplitude) C. R¨ over, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals... 14

  16. The “chirp” signal (3.5PN phase / 2.5PN amplitude approximation) C. R¨ over, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals... 15

  17. The 9 signal parameters • masses : m 1 , m 2 • luminosity distance : d L • sky location : declination δ , right ascension α • orientation : inclination ι , polarisation ψ , coalescence phase φ 0 • coalescence time : t c C. R¨ over, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals... 16

  18. Prior information • different locations / orientations equally likely • masses: uniform across [ 1 M ⊙ , 10 M ⊙ ] • events spread uniformly across space: P( d L ≤ x ) ∝ x 3 • but: certain SNR required for detection • cheap SNR substitute : signal amplitude A • primarily dependent on masses , distance , inclination : A ( m 1 , m 2 , d L , ι ) C. R¨ over, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals... 17

  19. • introduce sigmoid function linking amplitude to detection probability : 100% 90% detection probability 10% 0% A(2,2,60,0) A(2,2,50,0) (log−) amplitude C. R¨ over, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals... 18

  20. Resulting (marginal) prior density 200 luminosity distance (d L ) 150 100 50 0 5 10 15 20 total mass (m t = m 1 + m 2 ) C. R¨ over, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals... 19

  21. Marginal prior density 200 luminosity distance (d L ) 150 100 50 0 π 2 0 π inclination angle ( ι ) C. R¨ over, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals... 20

  22. Marginal prior densities individual masses (m 1 , m 2 ) inclination angle ( ι ) 2 4 6 8 10 π 2 0 π (sun masses) (radian) C. R¨ over, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals... 21

  23. Prior • prior ‘considers’ Malmquist effect (selection effect) • more realistic settings once detection pipeline is set up (“selection” of signals done by the signal detection algorithm) C. R¨ over, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals... 22

  24. Model • data from several interferometers • noise assumed gaussian , coloured ; interferometer-specific spectrum • noise independent between interferometers ⇒ coherent network likelihood is product of individual ones • likelihood computation based on Fourier transforms of data and signal C. R¨ over, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals... 23

  25. MCMC details • Metropolis -algorithm • Reparametrisation , most importantly: chirp mass m c , mass ratio η • Parallel Tempering 1 several tempered MCMC chains running in parallel 1 sampling from p ( θ ) p ( θ | y ) for ‘temperatures’ 1 = T 1 ≤ T 2 ≤ . . . Ti 1 W.R. Gilks et al.: Markov chain Monte Carlo in practice (Chapman & Hall / CRC, 1996). C. R¨ over, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals... 24

  26. Example application • simulated data : 2 M ⊙ - 5 M ⊙ inspiral at 30 Mpc distance measurements from 3 interferometers: SNR LHO (Hanford) 8.4 LLO (Livingston) 10.9 Virgo (Pisa) 6.4 network 15.2 • data : 10 seconds (LHO/LLO), 20 seconds (Virgo) before coalescence, noise as expected at design sensitivities • computation speed : 1–2 likelihoods / second C. R¨ over, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals... 25

  27. Hanford Livingston Pisa 0.00 = t c −0.15 −0.10 −0.05 (seconds) C. R¨ over, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals... 26

  28. declination ( δ ) right ascension ( α ) −0.55 −0.50 −0.45 −0.40 4.60 4.65 4.70 4.75 4.80 (radian) (radian) coalescence time (t c ) luminosity distance (d L ) 9012.340 9012.344 9012.348 10 20 30 40 50 60 (seconds) (Mpc) C. R¨ over, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals... 27

  29. chirp mass (m c ) mass ratio ( η ) 2.685 2.695 2.705 2.715 0.18 0.19 0.20 0.21 0.22 0.23 0.24 (sun masses) individual masses (m 1 , m 2 ) 2 3 4 5 (sun masses) C. R¨ over, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals... 28

  30. 0.23 0.22 mass ratio ( η ) 0.21 0.20 0.19 2.685 2.690 2.695 2.700 2.705 2.710 2.715 chirp mass (m c ) C. R¨ over, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals... 29

  31. −24 ° −26 ° −28 ° declination δ −30 ° −32 ° −34 ° 18.2 h 18 h 17.8 h 17.6 h 17.4 h right ascension α C. R¨ over, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals... 30

  32. Additional examples • lower (total) signal-to-noise ratio (SNR) • ‘unbalanced’ SNR: SNR LHO (Hanford) 9.6 LLO (Livingston) 13.9 Virgo (Pisa) 0.2 network 16.9 C. R¨ over, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals... 31

  33. Low total SNR 40 − 10 ° distance d L (Mpc) declination δ − 20 ° 30 − 30 ° 20 − 40 ° 10 18 h 17 h 16 h π 2 0 π inclination ι (rad) right ascension α C. R¨ over, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals... 32

  34. Low SNR at one interferometer data included data excluded 40 ° 40 ° declination δ declination δ 30 ° 30 ° 20 ° 20 ° 10 ° 10 ° 19 h 18 h 17 h 19 h 18 h 17 h right ascension α right ascension α C. R¨ over, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals... 33

  35. Parallel tempering MCMC • several parallel MCMC chains • tempering : sampling from tempered distributions chain temperature sampling from 1 T 1 = 1 p ( θ ) p ( y | θ ) 1 2 T 2 = 2 p ( θ ) p ( y | θ ) 2 1 3 T 3 = 4 p ( θ ) p ( y | θ ) 4 . . . . . . . . . p ( θ ) • additional swap proposals between chains C. R¨ over, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals... 34

  36. MCMC chain 1 — temperature = 1 − 20 ° − 25 ° declination δ − 30 ° − 35 ° − 40 ° 18 h 30 ′ 18 h 00 ′ 17 h 30 ′ 17 h 00 ′ right ascension α C. R¨ over, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals... 35

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend