gravitational self force in extreme mass ratio binary
play

Gravitational self force in extreme-mass-ratio binary inspirals - PowerPoint PPT Presentation

Gravitational self force in extreme-mass-ratio binary inspirals Leor Barack University of Southampton (UK) December 16, 2010 IHES seminar December 16, 2010 1 / 26 Theory Meets Data Analysis at Comparable and Extreme Mass Ratios Perimeter


  1. Gravitational self force in extreme-mass-ratio binary inspirals Leor Barack University of Southampton (UK) December 16, 2010 IHES seminar December 16, 2010 1 / 26

  2. Theory Meets Data Analysis at Comparable and Extreme Mass Ratios Perimeter Institute, June 2010 Conference summary by Steve Detweiler [arXiv 1009.2726, 15 September 2010] . . . As a member of the Capra community, I am pleased to report that we are reaching the end of a long, difficult adolescence. In the self-force portion of the meeting, a few serious meaningful applications of the gravitational self-force were described that allow for detailed comparisons among each other as well as with corresponding post-Newtonian analyses. The gravitational self-force has arrived. . . . IHES seminar December 16, 2010 2 / 26

  3. In this review: Motivation: EMRIs as sources for LISA Self force theory Implementation methods Conservative effects of the gravitational self force IHES seminar December 16, 2010 3 / 26

  4. 2-body problem in relativity IHES seminar December 16, 2010 4 / 26

  5. EMRIs as probes of strong-field gravity EMRI parameter extraction accuracies with LISA (SNR=30) S / M 2 0 . 1 0 . 1 0 . 5 0 . 5 1 1 0 . 1 0 . 3 0 . 1 0 . 3 0 . 1 0 . 3 e LSO ∆M / M 2 . 6e − 4 5 . 6e − 4 2 . 7e − 4 9 . 2e − 4 2 . 8e − 4 2 . 5e − 4 ∆ ( S / M 2 ) 3 . 6e − 5 7 . 9e − 5 1 . 3e − 4 6 . 3e − 4 2 . 6e − 4 3 . 7e − 4 ∆m / m 6 . 8e − 5 1 . 5e − 4 6 . 8e − 5 9 . 2e − 5 6 . 1e − 5 9 . 1e − 5 ∆( e 0 ) 6 . 3 e − 5 1 . 3 e − 4 8 . 5 e − 5 2 . 8 e − 4 1 . 2 e − 4 1 . 1 e − 4 ∆(cos λ ) 6 . 0 e − 3 1 . 7 e − 2 1 . 3 e − 3 5 . 8 e − 3 6 . 5 e − 4 8 . 4 e − 4 ∆(Ω s ) 1 . 8 e − 3 1 . 7 e − 3 2 . 0 e − 3 1 . 7 e − 3 2 . 1 e − 3 1 . 1 e − 3 ∆(Ω K ) 5 . 6 e − 2 5 . 3 e − 2 5 . 5 e − 2 5 . 1 e − 2 5 . 6 e − 2 5 . 1 e − 2 ∆[ln( µ/ D )] 8 . 7 e − 2 3 . 8 e − 2 3 . 8 e − 2 3 . 7 e − 2 3 . 8 e − 2 7 . 0 e − 2 ∆( t 0 ) ν 0 4 . 5 e − 2 1 . 1 e − 1 2 . 3 e − 1 1 . 3 e − 1 2 . 5 e − 1 3 . 2 e − 2 [LB & Cutler (2004)] IHES seminar December 16, 2010 5 / 26

  6. “Self force” description of the motion Equations of motion 1 mu β ∇ β u α = F α self ( ∝ m 2 ) 2 � ¯ µν + 2 R α β µ ν ¯ h ret h ret αβ = − 16 π T µν self (¯ 3 F α self = F α h ret αβ ) = ? IHES seminar December 16, 2010 6 / 26

  7. “Self force” description of the motion Equations of motion 1 mu β ∇ β u α = F α self ( ∝ m 2 ) 2 � ¯ µν + 2 R α β µ ν ¯ h ret h ret αβ = − 16 π T µν self (¯ 3 F α self = F α h ret αβ ) = ? Challenges: regularization make sense of “point particle” in curved space self-interaction is not instantaneous in curved space (“tail” effect) self force (and orbit) are gauge dependent Lorenz-gauge condition dictates geodesic motion IHES seminar December 16, 2010 6 / 26

  8. Regularization: Dirac’s method and its failure in curved space Decomposition of the EM vector potential for an electron in flat space: 1 α ) + 1 A ret 2( A ret α + A adv 2( A ret α − A adv = α ) α F α self = e ∇ αβ A R → ≡ A S ≡ A R β α α Symmetric / Singular Radiative / Regular FLAT IHES seminar December 16, 2010 7 / 26

  9. Regularization: Dirac’s method and its failure in curved space Decomposition of the EM vector potential for an electron in flat space: 1 α ) + 1 A ret 2( A ret α + A adv 2( A ret α − A adv = α ) α F α self = e ∇ αβ A R → ≡ A S ≡ A R β α α Symmetric / Singular Radiative / Regular Difficulty: Local Radiative potential becomes non-causal in curved space! FLAT CURVED IHES seminar December 16, 2010 7 / 26

  10. Regularization of the gravitational self-force Mino, Sasaki & Tanaka (1997): via Hadamard expansion + integration across in a thin worldtube Mino, Sasaki & Tanaka (1997), Poisson (2003), Pound (2010): via Matched Asymptotic Expansions Quinn & Wald (1997): via an axiomatic approach based on comparison to flat space Gralla& Wald (2008): by taking “far/near”-zone limits of a family of spacetimes Harte (2010): from generalized Killing fields IHES seminar December 16, 2010 8 / 26

  11. The gravitational self-force F α x → z ( τ ) ∇ αµν h tail = lim self µν x → z ( τ ) ∇ αµν � � h ret µν − h dir = lim µν IHES seminar December 16, 2010 9 / 26

  12. Detweiler–Whiting reformulation (2003) Dirac-like decomposition of h ret αβ for a mass particle in curved space: 1 αβ ) − H αβ + 1 h ret 2( h ret αβ + h adv 2( h ret αβ − h adv = αβ ) + H αβ αβ → F α self = m ∇ αβγ h R ≡ h S ≡ h R βγ αβ αβ Symmetric / Singular Radiative / Regular IHES seminar December 16, 2010 10 / 26

  13. Detweiler–Whiting reformulation (2003) Dirac-like decomposition of h ret αβ for a mass particle in curved space: 1 αβ ) − H αβ + 1 h ret 2( h ret αβ + h adv 2( h ret αβ − h adv = αβ ) + H αβ αβ → F α self = m ∇ αβγ h R ≡ h S ≡ h R βγ αβ αβ Symmetric / Singular Radiative / Regular h R αβ is a vacuum solution of the Einstein equations. Interpretation: orbit is a geodesic of g αβ + h R αβ . IHES seminar December 16, 2010 10 / 26

  14. Mode-sum method [LB & Ori (2000-2003)] Define F ret / S ≡ m ∇ h ret / S (as fields), then write = ( F ret − F S ) | p F self ∞ � � �� F ℓ ret − F ℓ = ( ℓ -mode contributions are finite) � S p ℓ =0 ∞ ∞ � � � � � � F ℓ F ℓ = ret ( p ) − AL − B − C / L − S ( p ) − AL − B − C / L ℓ =0 ℓ =0 ∞ � � � F ℓ = ret ( p ) − AL − B − C / L − D (where L = ℓ + 1 / 2) ℓ =0 IHES seminar December 16, 2010 11 / 26

  15. Mode-sum method [LB & Ori (2000-2003)] Define F ret / S ≡ m ∇ h ret / S (as fields), then write = ( F ret − F S ) | p F self ∞ � � �� F ℓ ret − F ℓ = ( ℓ -mode contributions are finite) � S p ℓ =0 ∞ ∞ � � � � � � F ℓ F ℓ = ret ( p ) − AL − B − C / L − S ( p ) − AL − B − C / L ℓ =0 ℓ =0 ∞ � � � F ℓ = ret ( p ) − AL − B − C / L − D (where L = ℓ + 1 / 2) ℓ =0 Regularization Parameters A α , B α , C α , D α derived analytically for generic orbits in Kerr [LB & Ori (2003), LB (2009)]. IHES seminar December 16, 2010 11 / 26

  16. Implementations so far (geodesic orbits, no evolution yet) year Schwarzschild Kerr 2000 static 2000 head-on 2001 static 2002 head-on 2003 circular 2007 eccentric 2007 static 2007 circular 2009 circular-equatorial 2009 eccentric 2010 eccentric-equatorial 2010 circular-inclined gravitational self force / scalar-field toy model IHES seminar December 16, 2010 12 / 26

  17. The gauge problem Original regularization formulated in Lorenz gauge (div ¯ h = 0). ◮ Linearized Einstein equation takes a neat hyperbolic form ◮ Particle singularity is “isotropic” and Coulomb-like IHES seminar December 16, 2010 13 / 26

  18. The gauge problem Original regularization formulated in Lorenz gauge (div ¯ h = 0). ◮ Linearized Einstein equation takes a neat hyperbolic form ◮ Particle singularity is “isotropic” and Coulomb-like Unfortunately Lorenz-gauge equations are not easily amenable to numerical treatment. Options: Work out the singular gauge transformations, or develop methods to integrate the Lorenz-gauge equations. IHES seminar December 16, 2010 13 / 26

  19. Direct Lorenz-gauge implementation [LB & Lousto (2005)] Start with 10 coupled perturbation equations + 4 gauge conditions: � ∞ δ [ x µ − z µ ( τ )] � ¯ h αβ + 2 R µανβ ¯ h µν = − 16 π m √− g u α u β d τ −∞ Z α ≡ ∇ β ¯ h αβ = 0 Add “constraint damping” terms, − κ t ( α Z β ) IHES seminar December 16, 2010 14 / 26

  20. Direct Lorenz-gauge implementation [LB & Lousto (2005)] Start with 10 coupled perturbation equations + 4 gauge conditions: � ∞ δ [ x µ − z µ ( τ )] � ¯ h αβ + 2 R µανβ ¯ h µν = − 16 π m √− g u α u β d τ −∞ Z α ≡ ∇ β ¯ h αβ = 0 Add “constraint damping” terms, − κ t ( α Z β ) Expand in tensor harmonics, 10 � � ¯ h ( i ) lm ( r , t ) Y ( i ) lm h αβ = αβ l , m i =1 Obtain 10 coupled scalar-like eqs for h ( i ) lm ( r , t ) IHES seminar December 16, 2010 14 / 26

  21. Direct Lorenz-gauge implementation [LB & Lousto (2005)] Start with 10 coupled perturbation equations + 4 gauge conditions: � ∞ δ [ x µ − z µ ( τ )] � ¯ h αβ + 2 R µανβ ¯ h µν = − 16 π m √− g u α u β d τ −∞ Z α ≡ ∇ β ¯ h αβ = 0 Add “constraint damping” terms, − κ t ( α Z β ) Expand in tensor harmonics, 10 � � ¯ h ( i ) lm ( r , t ) Y ( i ) lm h αβ = αβ l , m i =1 Obtain 10 coupled scalar-like eqs for h ( i ) lm ( r , t ) Solve numerically using time-domain evolution in characteristic coordinates Use as input for the mode-sum formula IHES seminar December 16, 2010 14 / 26

  22. Sample numerical results [LB & Sago (2010)] Gravitational self-force in Schwarzschild ( p , e ) = (10 M , 0 . 2) ( p , e ) = (10 M , 0 . 5) 0.0025 0.006 F t F t (p,e)=(10,0.2) (p,e)=(10,0.5) F r F r /10 /10 0.002 0.004 0.0015 0.002 0.001 (M/ µ ) 2 F α (M/ µ ) 2 F α 0 0.0005 0 -0.002 -0.0005 -0.004 -0.001 -400 -300 -200 -100 0 100 200 300 400 -400 -200 0 200 400 t [in unit of M solar ] t [in unit of M solar ] IHES seminar December 16, 2010 15 / 26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend