cmb bispectrum and non gaussian inflation
play

CMB Bispectrum and non-Gaussian Inflation James Fergusson and Paul - PowerPoint PPT Presentation

CMB Bispectrum and non-Gaussian Inflation James Fergusson and Paul Shellard (DAMTP, Cambridge) [astro-ph/0612713] (also Michele Liguori (DAMTP)) with Gerasimos Rigopoulos (Utrecht/Helsinki) and Bartjan van Tent (Paris-Orsay) [astro-ph/0511041


  1. CMB Bispectrum and non-Gaussian Inflation James Fergusson and Paul Shellard (DAMTP, Cambridge) [astro-ph/0612713] (also Michele Liguori (DAMTP)) with Gerasimos Rigopoulos (Utrecht/Helsinki) and Bartjan van Tent (Paris-Orsay) [astro-ph/0511041 etc.]

  2. Dvali & Tye, 2000 B RANE I NFLATION Burgess, Quevedo et al 01 Jones, Stoica & Tye, 2002 KKLMMT, 2003 • Interbrane interaction creates inflationary potential • Brane collision = hybrid inflation reheating ‘Generic’ formation of cosmic strings Sarangi & Tye, 2002 See Majumdar review Extra fields and nonGaussianity hep-th/0512062 Observable signatures of extra dimensions?

  3. Multifield inflation Gravity is inherently nonlinear NonGaussianity! Interacting inflationary potentials CMB observations discriminating inflation models • Gaussian a † + Φ ∗ ˆ Gaussian with � ˆ Φ ˆ Φ ˆ ⇒ Φ � = 0 Φ lin = Φ lin ˆ a lin ˆ • Non-Gaussian Φ = ˆ ˆ Φ lin + ˆ Φ NL where ˆ Φ NL = f NL ˆ Φ 2 lin ⇒ nonGaussian with � ˆ Φ ˆ Φ ˆ Φ � ∼ f NL � ˆ Φ 2 lin � 2 • Observational prospects ( Komatsu astro-ph/0206039) WMAP will observe | f NL | ≥ 20, Planck | f NL | > 5 Current WMAP bound: - 58 < f NL < 134 (95%)

  4. Superhorizon non-Gaussianity • ‘Evolution’ equations (multifield inflation) − κ 2 dH 2 N Π B Π B , (1) = dt D t Π A − 3 NH Π A − NG AB V B , (2) = where V B ≡ ∂ B V ≡ ∂ V/ ∂φ B and κ 2 ≡ 8 π G = 8 π /m 2 pl • ‘Constraint’ equations κ 2 2 Π B Π B + V H 2 � 1 � , (3) = 3 − κ 2 2 Π B ∂ i φ B , ∂ i H (4) = • Separate Universe approach Salopek & Bond, 1990 initial data must respect energy and momentum constraints evolving collection of indpt universes preserve constraints • But how to self-consistently generate fluctuations?

  5. General semi-analytic solution • Recast master equation and perturbatively expand i , . . . ) T , Defining v i a ≡ ( ζ 1 i , θ 1 i , ζ 2 i , θ 2 implies v i a ( t, x ) + A ab ( t, x ) v i b ( t, x ) = 0 , ˙   0 − 1 0 0  with χ ( t, x ) ≡ e A 2 V ; AB e B η ⊥ 0 3 − 6˜ 0 2 η �   A = + ˜ ǫ + ˜   0 0 0 − 1 3 H 2  two-field case slow-roll example 0 0 3 χ 3 (exact case used) Perturbative v (1) i a + A (0) ab ( t ) v (1) b (1) ˙ = i a ( t, x ) , i b expansion: v (2) i a + A (0) ab ( t ) v (2) − A (1) ab ( t, x ) v (1) ˙ = i b , i b where v i a = v (1) i a + v (2) A (0) ab + A (1) ab = A (0) ab + ∂ − 2 ∂ i ( ∂ i A ab ) (1) i a and A ab ( t, x ) = A (0) A (0) ab ( t ) + ¯ abc ( t ) v (1) c ( t, x ) . ≡ � t First order solution: d t ′ G ab ( t, t ′ ) ˙ W ( k, t ′ ) X (1) v (1) bm ( k, t ′ ) . a m ( k, t ) ≡ −∞ Green’s function horizon-crossing linear soln

  6. Bispectrum expression Second-order equation with linear source terms Linear mode functions ζ lin Linear Green’s function Equiv. to linear mode fns Analytic soln at horizon-crossing v (2) i a + A (0) ab ( t ) v (2) A (0) abc ( t ) v (1) − ¯ i b ( t, x ) v (1) ˙ = c ( t, x ) , � t i b d t ′ G 1 a ( t, t ′ ) ¯ A (0) abc ( t ′ ) v (1) Solution for three-point adiabatic correlator bm ( k, t ′ ) v (1) cn ( k ′ , t ′ ) ζ 1 ζ 1 ζ 1 � (2) ( k 1 , k 2 , k 3 , t ) = (2 π ) 3 δ 3 ( � −∞ � � � s k s ) f ( k 1 , k 2 ) + f ( k 1 , k 3 ) + f ( k 2 , k 3 ) Perturbed coefficient in ζ A evolution equation Integrated/cumulative effect over time with � t f ( k , k ′ ) ≡ − k 2 + k · k ′ d t ′ G 1 a ( t, t ′ ) ¯ | k + k ′ | 2 v (1) 1 m ( k, t ) v (1) A (0) abc ( t ′ ) v (1) bm ( k, t ′ ) v (1) 1 n ( k ′ , t ) cn ( k ′ , t ′ ) −∞ + k ↔ k ′ . Slow-roll approximate bispectrum ( power spectrum ) 2 = � ζ 1 ζ 1 ζ 1 � bispectrum η ⊥ ) 2 ∆ t , f NL ≡ ≈ 2(˜ ( � ζ 1 ζ 1 � ) 2

  7. Momentum dependence Approach suited to calculating < ζ ( k 1 ) ζ ( k 2 ) ζ ( k 3 )> ‘shape’ information • Triangular parametrisation appropriate (scale out k = k 1 + k 2 + k 3 ) k 1 = ka = k (1 − β ) k 2 = kb = 1 2 k (1 + α + β ) k 3 = kc = 1 2 k (1 − α + β ) , • General momentum dependent f NL B Ψ ( k 1 , k 2 , k 3 ) 2 f NL ( k 1 , k 2 , k 3 ) = P Ψ ( k 1 ) P Ψ ( k 2 ) + P Ψ ( k 2 ) P Ψ ( k 3 ) + P Ψ ( k 3 ) P Ψ ( k 1 ) .

  8. ‘Local’ vs ‘Equilateral’ • In the new parametrisation local and approx. equilateral are: • local ( a, b, c ) = a 3 + b 3 + c 3 equilateral ( a, b, c ) = (1 − a )(1 − b )(1 − c ) B SI B SI . • a b c a b c • (1 )(1 )(1 ) *! ' !"+ %! !"& (! !"* $! !"% !"( )! !"$ #! !") !"# '! !"' ! ' ! ' ' !"& !"& !"( !"( !"% !"% ! ! !"$ !"$ ! !"( ! !"( !"# !"# ! ! ! ' ! '

  9. Primordial and CMB bispectra • The angle-averaged bispectrum Wigner 3j symbol � (2 l 1 + 1)(2 l 2 + 1)(2 l 3 + 1) � � l 1 l 2 l 3 B l 1 l 2 l 3 = (8 π ) 3 0 0 0 4 π Primordial bispectrum � � � � dk 3 ( xk 1 k 2 k 3 ) 2 B Ψ ( k 1 , k 2 , k 3 ) dx dk 1 dk 2 × Transfer × ∆ l 1 ( k 1 ) ∆ l 2 ( k 2 ) ∆ l 3 ( k 3 ) functions × j l 1 ( k 1 x ) j l 2 ( k 2 x ) j l 3 ( k 3 x ) . More problems • If the primordial bispectrum is separable this simplifies N � B Ψ ( k 1 , k 2 , k 3 ) = X i ( k 1 ) Y i ( k 2 ) Z i ( k 3 ) , i • Example: the local approximation B Ψ ( k 1 , k 2 , k 3 ) = 2 P Ψ ( k 1 ) P Ψ ( k 2 ) + P Ψ ( k 2 ) P Ψ ( k 3 ) + P Ψ ( k 3 ) P Ψ ( k 1 ) � � . The integral reduces to products of 1D integrals � b L k 2 dkP Ψ ( k ) ∆ l ( k ) j l ( kx ) l ( x ) = � x 2 dx b L l 1 ( x ) b L l 2 ( x ) b NL � where l 3 ( x ) + perms b NL k 2 dk ∆ l ( k ) j l ( kx ) , l 3 ( x ) = f NL

  10. Adaptive integration �� • Assuming an overall scale-dependence f(k) �� � � dk 1 dk 2 dk 3 ( k 1 k 2 k 3 ) 2 B Ψ ( k 1 , k 2 , k 3 ) ∆ l 1 ( k 1 ) ∆ l 2 ( k 2 ) ∆ l 3 ( k 3 ) x 2 dxj l 1 ( k 1 x ) j l 2 ( k 2 x ) j l 3 ( k 3 x ) . � d α d β B SI ( α , β ) I T ( α , β ) I G ( α , β ) , B SI ( α , β ) ≡ ( abc ) 2 B Ψ ( α , β ) , � I G ( α , β ) ≡ j l 1 ( ax ) j l 2 ( bx ) j l 3 ( cx ) x 2 dx � ∆ l 1 ( ak ) ∆ l 2 ( bk ) ∆ l 3 ( ck ) k n dk I T ( α , β ) ≡ k • Hierarchical adaptive mesh refinement methods

  11. Equal multipole bispectra • Local vs equilateral bispectra with full radiation transfer fns ()*+,-./0123245678.)- % 2 '9-67 :;0)76.,/67 & " ! & ! % ! $ ! # 2 !" !"" !""" ' • Equilateral errors for the large angle approx. (stringent) ()*+,-,./012+34 !#"!& , 5"" ! 5 !6""75 !#"! • !#""& ! "#$$& "#$$ "#$%& "#$% , !" !"" !""" '

  12. Local vs equilateral bispectra !"# !"# ! ! ' ' ! !"# ! !"# !"& ' ' !"& !"% !"( !"( !"% !"$ ! ! !"$ !"# ! !"( ! !"( !"# ! ! ' ! ! ' !"# !"# ! ! ' ' ! !"# !"& ! !"# ' !"& ' !"% !"( !"% !"( !"$ ! !"$ ! !"# ! !"( !"# ! !"( ! ! ' ! ! ' !"' !"' ! ! ' ' ! !"' ! !"' !"& ' !"& ' !"% !"( !"% !"( !"$ !"$ ! ! !"# ! !"( !"# ! !"( ! ! ' ! ! '

  13. DBI Inflation »»»» ««« Multifield Inflation

  14. Non-separable DBI bispectrum DBI vs equilateral bispectra Difference with equilateral approx.

  15. Likelihood analysis • Minimising ‘least squares’ for general primordial bispectra E = 1 � � B l 1 l 2 l 3 l 1 l 2 l 3 � a l 1 m 1 a l 2 m 2 a l 3 m 3 m 1 m 2 m 3 N C l 1 C l 2 C l 3 l i m i Planck full sky map Theoretical model Wigner 3j symbol ( B l 1 l 2 l 3 ) 2 � N = where C l 1 C l 2 C l 3 l 1 l 2 l 3 • Estimator with bispectrum in separable form N fact b l 1 l 2 l 3 = 1 a lm � � X ( i ) l 1 Y ( i ) l 2 Z ( i ) X ( i ) � � X ( i ) l 3 + 5 perms a ( ˆ n ) = Y lm ( ˆ n ) , , • l 6 C l i =1 lm • N fact S = 1 � � n X ( i ) n ) Y ( i ) n ) Z ( i ) a ( ˆ a ( ˆ a ( ˆ n ) . d ˆ N i =1

  16. Separable expansion • Smooth bispectrum implies accurate sum with basis functions b l 1 l 2 l 3 = 1 � � � X ′ α ( l 1 ) X ′ β ( l 2 ) X γ ( l 3 ) + 2 permutations a αβγ , 3 αβγ • Here the coefficients in the sum are given by X α ( l ) = P α (2 l − l max α ( l ) = X α ( l ) X ′ ) , l ( l + 1) . l max • With expansion coefficients given by ... � � l 1 ( l 1 + 1) l 2 ( l 2 + 1) l 3 ( l 3 + 1) � b l 1 l 2 l 3 = a αβγ X α ( l 1 ) X β ( l 2 ) X γ ( l 3 ) l 1 ( l 1 + 1) + l 2 ( l 2 + 1) + l 3 ( l 3 + 1) αβγ � dl 1 dl 2 dl 3 � l 1 ( l 1 + 1) l 2 ( l 2 + 1) l 3 ( l 3 + 1) � a αβγ = (2 α + 1)(2 β + 1)(2 γ + 1) b l 1 l 2 l 3 X α ( l 1 ) X β ( l 2 ) X γ ( l 3 ) l 3 l 1 ( l 1 + 1) + l 2 ( l 2 + 1) + l 3 ( l 3 + 1) max • So the estimator becomes ... X α ( l ) X α ( l ) a lm a lm ¯ � ¯ � X ′ X α ( ˆ n ) = Y lm ( ˆ n ) , α ( ˆ n ) = Y lm ( ˆ n ) , l ( l + 1) C l C l lm lm � ¯ S = 1 M αβγ = 1 � � n ) ¯ n ) ¯ � X ′ X ′ α ( ˆ β ( ˆ X γ ( ˆ n ) + 2 perms a αβγ M αβγ where d ˆ . n 3 N αβγ

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend