the bispectrum beyond slow roll in the unifjed eft of
play

The Bispectrum Beyond Slow-Roll in the Unifjed EFT of Infmation - PowerPoint PPT Presentation

The Bispectrum Beyond Slow-Roll in the Unifjed EFT of Infmation Passaglia & Hu, In Prep. Samuel Passaglia University of Chicago Bispectrum is a test of the Physics of Infmation Size and shape of bispectrum probes infmaton interactions


  1. The Bispectrum Beyond Slow-Roll in the Unifjed EFT of Infmation Passaglia & Hu, In Prep. Samuel Passaglia University of Chicago

  2. Bispectrum is a test of the Physics of Infmation Size and shape of bispectrum probes infmaton interactions 16)(Beyond Slow-Roll Signals, e.g., Hannestad et al. 2010) (Future Bispectrum Prospects: CMB: Abazajian et al. 16, LSS: Gleyzes et al. 17, Bauldofg et al. Slow-roll violating models produce new discovery modes. Constraints will improve NL NL NL 1 ⟨ ˆ R k 1 ˆ R k 2 ˆ R k 3 ⟩ = (2 π ) 3 δ 3 ( k 1 + k 2 + k 3 ) B R ( k 1 , k 2 , k 3 ) f NL ( k 1 , k 2 , k 3 ) ≡ 5 B R ( k 1 , k 2 , k 3 ) P R ( k 1 ) P R ( k 2 ) + perm. . 6 Planck: f squeeze. ∼ 1 ± 5 , f equil ∼ 0 ± 40 , f ortho. ∼ − 30 ± 20 .

  3. In This Talk Simple expressions for the bispectrum for any* single-fjeld model even when slow-roll is violated This enables precision tests of individual models and of the single-fjeld paradigm 2

  4. Deriving the interactions

  5. The Unifjed EFT of Infmation • EFT of infmation: Explicitly break time difgs in action. • Extended to gravitational operators in Dark Energy context . • Motohashi & Hu 2017 studied these operators in infmationary power spectra . We use this framework to compute bispectrum for general models. (EFT Infmation: Creminelli et al. 06, Cheung et al. 07, Baumann & Green 11)(Operator Extensions: Gleyzes et al. 13, Gleyzes et al. 14, Kase and Tsujikawa 14, Gleyzes et al. 15) 3

  6. Work directly in 3+1 Split • Easily connects to model space and to observables Passaglia & Hu In Prep, Motohashi & Hu 2017 relation • Perturb around FLRW up to cubic order . 4 √ ∫ d 4 xN h L ( N, K i j , R i S = j , t ) , • Only R dynamical. Enforce standard dispersion 1 d dt ( a 3 Q ˙ ∂ 2 R = R ) aQc 2 s

  7. Third-Order Action for Perturbations After integration by parts and use of the equation of Passaglia & Hu, In Prep 5 motion ∫ [ R 2 + aF 2 R ( ∂ R ) 2 a 3 F 1 R ˙ d 3 x d t S 3 = ) 2 R 3 + a 3 F 4 ˙ R ∂ a R ∂ a ∂ − 2 ˙ ( ∂∂ − 2 ˙ + a 3 F 3 ˙ R + a 3 F 5 ∂ 2 R R + F 6 R ∂ 2 R ∂ 2 R + F 7 a 3 ( ∂ a ∂ b R ) 2 ∂ 2 R ˙ a + F 8 a 3 ∂ 2 R ∂ 2 R ∂ 2 R + F 9 ∂ a ∂ b ∂ − 2 ˙ ( )] a ∂ 2 R ( ∂ a ∂ b R ) R , • k-Infmation, Horndeski+GLPV, EFT

  8. Consistency Relation Problem? • Trick (extended from Creminelli et al. 2011, Adshead et Passaglia & Hu, In Prep al. 2013): 6 ∫ [ R 2 + aF 2 R ( ∂ R ) 2 ] a 3 F 1 R ˙ d 3 x d t S squeeze = 3 • F 1 , F 2 ⊃ EFT coeffjcients not in power spectrum. d ( F RH 2 ) = Terms that do not contribute to squeeze dt H + Consistency Relation Terms + Terms that cancel

  9. Cubic Action SR suppressed Passaglia & Hu, In Prep • Manifestly preserves consistency relation in slow-roll. no squeeze no squeeze SR suppressed gives consistency 7 ∫ [ a 3 Q d ( ϵ H + 3 2 σ + q ) R 2 ˙ d 3 x d t S 3 ⇒ R dt 2 [ a 3 Q ] − d 2 ( 1 − n s ) | SR R 2 ˙ R dt + ( σ + ϵ H ) R ( H 2 + 2 L 2 ) ˙ RL 2 + (1 − F ) H + ( F 3 through F 9 terms)

  10. Bispectrum Beyond Slow-Roll

  11. In-In Formalism (Condensed Matter: Schwinger 61, Keldysh 64)(Cosmology: Jordan 86, Calzetta+Hu 87)(Infmation: Maldacena 02, Weinberg 05, Lim et al. 08, Senatore+Zaldarriaga 09, ++++) 8 ⟨ ˆ R k 1 ( t ∗ ) ˆ R k 2 ( t ∗ ) ˆ R k 3 ( t ∗ ) ⟩ = ∫ t ∗ [ ⟨ ⟩] ˆ k 1 ( t ∗ ) ˆ k 2 ( t ∗ ) ˆ R I R I R I d tH I ( t ) Re − i k 3 ( t ∗ ) −∞ (1+ iϵ ) • H I ≃ − ∫ d 3 x L I 3 at this order • R I satisfy quadratic-order equation of motion.

  12. Generalized Slow-Roll GSR is an iterative solution for the modefunctions Stewart 02, Choe et al. 04, Kadota et al. 05, Dvorkin & Hu 09 We compute to fjrst-order in GSR. No general analytic solution to the equation of motion 9 1 d dt ( a 3 Q ˙ ∂ 2 R = R ) aQc 2 s ∫ ∞ d w s ) y ( w ) Im [ y ∗ y ( x ) = y 0 ( x ) − w 2 g (ln ˜ 0 ( w ) y 0 ( x )] , x ( 1 + i ) e ix . y 0 ( x ) = x Where y ∝ R , and orders are suppressed by g = ( f ′′ − 3 f ′ ) /f 2 , where 1 f 2 ∼ ∆ 2 .

  13. GSR Bispectrum Results Combine with a few shape-dependent terms and get Passaglia & Hu In Prep, Adshead et al. 2013 10 Each operator i gives j ( ∼ 5 ) shape-independent integrals ∫ ∞ ds s S ′ I ij ( K ) = S ij (ln s ∗ ) W ij ( Ks ∗ ) + ij (ln s ) W ij ( Ks ) . s ∗ • S ij are sources ∝ F i • W ij are windows , e.g. cos( x ) B R ( k 1 , k 2 , k 3 ) = (2 π ) 4 ∆ R ( k 1 )∆ R ( k 2 )∆ R ( k 3 ) k 2 1 k 2 2 k 2 4 3 9 { ∑ } ∑ × T ij I ij ( K ) + [ T iB I iB (2 k 3 ) + perm . ] . i =2 ij k 1 k 2 k 3 • T ij are k -weights for triangle shapes, e.g. ( k 1 + k 2 + k 3 ) 3

  14. Consistency Relation Revisited: Beyond Slow-Roll Beyond SR, no new interactions contribute to squeeze Analytically show GSR consistency relation enforced when: freeze-out . We return to these conditions shortly Passaglia & Hu, In Prep 11 1. the expansion at fjrst-order is valid (i.e. g ≫ g 2 ) 2. No large power spectrum evolution between k S and k L

  15. Example: transient G-infmation

  16. Slow-Roll Violation in transient G-infmation • Transition from Horndeski G-Infmation (Kobayashi et al. 11, Ohashi & Tsujikawa 12) to Chaotic Infmation. SR Violation: good test of our approach. Ramírez, Passaglia , Motohashi, Hu, Mena, 1802.04290 12 L ⊃ f 3 ( ϕ ) X 2 □ ϕ • f 3 ( ϕ ) tanh step.

  17. Equilateral bispectrum GSR properly handles the transition. Passaglia & Hu, In Prep. SR Formula from De Felice & Tsujikawa 2013 13 0 . 30 GSR Horndeski SR 0 . 25 0 . 20 f Equil . NL 0 . 15 0 . 10 0 . 05 0 . 00 10 − 8 10 − 6 10 − 4 10 − 2 10 0 10 2 10 4 10 6 k Eq

  18. Squeeze-Limit Consistency Relation • Correction: Modefunction evolution between freezeout Passaglia & Hu, In Prep epochs. (see Miranda et al. 2015 for ways to avoid) 14 0 . 30 Consistency GSR Corrected 0 . 25 GSR Original 0 . 20 f squeeze NL 0 . 15 0 . 10 0 . 05 0 . 00 10 − 4 10 − 2 10 0 10 2 10 4 k L • Residual error: Next-order GSR needed, g 2 ∼ g .

  19. Conclusions

  20. Take-Home Messages Our computation of bispectrum beyond slow-roll enables precision model tests. Expressions are easy to use : a few 1-D integrals. Consistency relation explicitly holds beyond slow-roll! Passaglia & Hu, In Prep 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend