classifying spaces of quandles and low dimensional
play

Classifying spaces of quandles and low dimensional topology - PowerPoint PPT Presentation

Classifying spaces of quandles and low dimensional topology Takefumi Nosaka Kyoto univ. RIMS Introduction X : a quandle BX : a rack space [95, Fenn-Rourke-Sanderson] [FRS] studied BX ,


  1. Classifying spaces of quandles and low dimensional topology 野坂 武史 Takefumi Nosaka Kyoto univ. RIMS 京都大学 数理解析研究所

  2. Introduction X : a quandle BX : a rack space [95, Fenn-Rourke-Sanderson] [FRS] studied BX , particularly, π ∗ ( BX ) and a “ link bordism ” .

  3. Introduction X : a quandle BX : a rack space [95, Fenn-Rourke-Sanderson] [FRS] studied BX , particularly, π ∗ ( BX ) and a “ link bordism ” . Quandle cocycle invariant (Carter-Jelsovsky-Kamada -Langford-Saito, 99)   L : S 1 ֒ → S 3 or Σ g ֒  → S 4    Quandle cocycle invariant X : finite quandle  � Φ ϕ ( L ) ∈ Z [ A ]    ϕ ∈ H 3 ( BX ; A ) with a condition

  4. Introduction X : a quandle BX : a rack space [95, Fenn-Rourke-Sanderson] [FRS] studied BX , particularly, π ∗ ( BX ) and a “ link bordism ” . Quandle cocycle invariant (Carter-Jelsovsky-Kamada -Langford-Saito, 99)   L : S 1 ֒ → S 3 or Σ g ֒  → S 4    Quandle cocycle invariant X : finite quandle  � Φ ϕ ( L ) ∈ Z [ A ]    ϕ ∈ H 3 ( BX ; A ) with a condition Questions • What does the space BX classify? • How about more applications to low-dim. topology?

  5. The content of this talk § 1 Definition of quandles and examples § 2 Review of classifying spaces BX § 3 X -colorings and their homotopy groups π 2 ( BX ). § 4 Some applications to low-dimensional topology

  6. { X : a set A quandle ( X, ∗ ) is a pair satisfying ∗ : X × X − → X • ∀ x ∈ X, x ∗ x = x • ∀ y ∈ X , • ∗ y : X − → X is a bijection. • ∀ x, y, z ∈ X, ( x ∗ y ) ∗ z = ( x ∗ z ) ∗ ( y ∗ z ) Ex. Conjugacy quandle x ∗ y def = y − 1 xy ∀ x, y ∈ X X = G grp. Ex. Alexander quandle on a finite field F q : ( F q , ∗ ω ) ω ∈ F q \ { 0 , 1 } ωa x ∗ ω y def = y + ω ( x − y ) y x ∗ a x y ( • ∗ ω y ) = ω multiple centered at y

  7. Ex. The fundamental quandle Q ( M, N ) N ⊂ M : an oriented manifold pair of codimension 2. = { * Q ( M, N ) def → ( M, N ) } / homotopy ∞ ∞ * def� Fact (Joyce, Matveev) K 1 , K 2 Knots S 1 ֒ → S 3 emb. ⇒ ∃ quand. isom. Q ( S 3 , K 1 ) ∼ = Q ( S 3 , K 2 ) K 1 ≃ K 2 isotopic ⇐ cf. ∃ K, K ′ ⊂ S 3 s.t. K ̸≃ K ′ & π 1 ( S 3 \ K ) ∼ = π 1 ( S 3 \ K ′ ).

  8. X : a quandle over-arc D : an oriented link diagram ⊂ S 2 An X -coloring of D is a map C : { over-arcs } → X satisfying α β C ( α ) ∗ C ( β ) = C ( γ ) γ D : a digram of a link L ⊂ S 3 Properties • { X -coloring of D } 1:1 → Hom Qnd ( Q ( S 3 , L ) , X ) − β β γ α α γ

  9. ∪ Rack space (Fenn-Rourke-Sanderson) BX def = ( d -skeleton) 1-skeleton 2-skeleton = (( a, b )-cells) ∪ 1-skeleton a . . . . . X ∋ b . . . b b . . X ∋ a . . . a ∗ b 3-skeleton=(( a, b, c )-cells) ∪ 2-skeleton a b a ∗ b b c c c a ∗ c b ∗ c ( a ∗ b ) ∗ c = ( a ∗ c ) ∗ ( b ∗ c )

  10. ∪ Rack space (Fenn-Rourke-Sanderson) BX def = ( d -skeleton) 1-skeleton 2-skeleton = (( a, b )-cells) ∪ 1-skeleton a . . . . . X ∋ b . . . b b . . X ∋ a . . . a ∗ b 3-skeleton=(( a, b, c )-cells) 4-skeleton=(( a, b, c, d )-cells) ∪ 2-skeleton ∪ 3-skeleton a b a ∗ b b c c c a ∗ c b ∗ c ( a ∗ b ) ∗ c = ( a ∗ c ) ∗ ( b ∗ c )

  11. ∪ Rack space (Fenn-Rourke-Sanderson) BX def = ( d -skeleton) 1-skeleton 2-skeleton = (( a, b )-cells) ∪ 1-skeleton a . . . . . X ∋ b . . . b b . . X ∋ a . . . a ∗ b 3-skeleton=(( a, b, c )-cells) 4-skeleton=(( a, b, c, d )-cells) ∪ 2-skeleton ∪ 3-skeleton a b a ∗ b b c c c a ∗ c b ∗ c ( a ∗ b ) ∗ c = ( a ∗ c ) ∗ ( b ∗ c ) Rem. BX was defined by a fat realization of a “ cubical set ” .

  12. Known results on the rack homology H ∗ ( BX ) = H R ∗ ( X ) ℓ : # of “ connected components ” of X • (03, Etingof-Gra˜ na) = Q ℓ n ⇒ H n ( BX ; Q ) ∼ | X | < ∞ =

  13. Known results on the rack homology H ∗ ( BX ) = H R ∗ ( X ) ℓ : # of “ connected components ” of X • (03, Etingof-Gra˜ na) = Q ℓ n ⇒ H n ( BX ; Q ) ∼ | X | < ∞ = • (03, T. Mochizuki) X = F q , ω ∈ F q , x ∗ y = ωx +(1 − ω ) y He determined H 2 ⊕ H 3 ( BX ; F q ) with their base. • (09, N.) Let q = p . ( ) He determined the quandle homologies H Q ∗ ( X ; Z ) ⊂ H ∗ ( BX ; Z ) • (10, Clauwens) Let q = p and ω = − 1 He determined the rack homology H ∗ ( BX ; Z ).

  14. Known results on the rack homology H ∗ ( BX ) = H R ∗ ( X ) ℓ : # of “ connected components ” of X • (03, Etingof-Gra˜ na) = Q ℓ n ⇒ H n ( BX ; Q ) ∼ | X | < ∞ = • (03, T. Mochizuki) X = F q , ω ∈ F q , x ∗ y = ωx +(1 − ω ) y He determined H 2 ⊕ H 3 ( BX ; F q ) with their base. • (09, N.) Let q = p . ( ) He determined the quandle homologies H Q ∗ ( X ; Z ) ⊂ H ∗ ( BX ; Z ) • (10, Clauwens) Let q = p and ω = − 1 He determined the rack homology H ∗ ( BX ; Z ). Next, we discuss π ∗ ( BX ) by low-dim. topology.

  15. { } We can have ( C, D ) : X -coloring C of D C,D → π 2 ( BX ) { } Π 2 ( X ) def = ( C, D ) C,D / R-II, III moves, concordance rel. a a a � a FACT (Fenn-Rourke-Sanderson) ( cf. Thom’s fund. theorem) ∀ X quandle. There exists an isom. Π 2 ( X ) ∼ = π 2 ( BX ). Rem Π n ( X ) → π n ( BX ) is known. But whether it is an isom. or not is unknown for n > 2. Rem (What is the quandle cocycle invariant [CJKLS] ? ) ⟨ ϕ, • ⟩ H ϕ ∈ H 2 ( BX ; A ) π 2 ( BX ) − → H 2 ( BX ; A ) − → A

  16. How to compute the homotopy grp, π 2 ( BX ) & π 3 ( BX ) Top. monoid str. on the universal cov. of BX by Clauwens π 1 ( BX ) ∼ = Adj( X ) := ⟨ x ∈ X | x · y = y · ( x ∗ y ) ⟩ ∪ ( Adj( X ) × ([0 , 1] × X ) n ) � BX ≃ / ∼ n ≥ 0 µ : ( G × [0 , 1] n × X n ) × ( G × [0 , 1] m × X m ) → G × [0 , 1] n + m × X n + m , µ ([ g ; t 1 , . . . , t n , x 1 , . . . , x n ] , [ h ; t ′ 1 , . . . , t ′ m , x ′ 1 , . . . , x ′ m ]) := [ gh ; t 1 , . . . , t n , t ′ 1 , . . . , t ′ m , x 1 ∗ h, . . . , x n ∗ h, x ′ 1 , . . . , x ′ m ] , Rem. π 1 ( BX ) is non-comm. grp. So BX admits no t.p.l monoid str. Classical Fact The 2-nd Postnikov inv. of connected t.p.l monoid is annihilated by 2.

  17. Thm. (10, N.) X = F q with p > 2. ω ∈ F q , x ∗ y = ωx + (1 − ω ) y = ⇒ ∃ a splitting exact sequence → Λ 2 ( ) 0 − → π 2 ( BX ) − → H 3 ( BX ; Z ) − H 2 ( BX ; Z ) − → 0 Exa. (N.) If q = p h and ω = − 1, ( ) = h 2 ( h 2 +11) + 1. then dim π 2 ( BX ) ⊗ Z p 12

  18. Thm. (10, N.) X = F q with p > 2. ω ∈ F q , x ∗ y = ωx + (1 − ω ) y = ⇒ ∃ a splitting exact sequence → Λ 2 ( ) 0 − → π 2 ( BX ) − → H 3 ( BX ; Z ) − H 2 ( BX ; Z ) − → 0 Exa. (N.) If q = p h and ω = − 1, ( ) = h 2 ( h 2 +11) + 1. then dim π 2 ( BX ) ⊗ Z p 12 → S 4 ) Thm (10, N.) (On π 3 ( BX ) vs. knotted surfaces Σ g ֒ Further, if X satisfies the vanishing H Q 2 ( X ; Z ) ∼ = 0, = ⇒ π 3 ( BX ) ∼ = Z 2 ⊕ H 4 ( BX ; Z ) . Cor. (N.) If q = p and ω = − 1, then π 3 ( BX ) ∼ = Z 2 ⊕ ( Z p ) 2 .

  19. Some Applications to low-dimensional topology (I) Closed 3-mfds via branched covering spaces M → S 3 Fact ∀ M , ∃ L ⊂ S 3 s.t. M = 4-fold bran. cov. along L . Prop. (09, E. Hatakenaka) ∀ G grp, ∃ a quandle � G s.t. → { Q ( S 3 , L ) f 1:1 → � Hom( π 1 ( M ) , G ) × G ← G | · · · } N. constructed a 3-mfd inv. ∈ Z [ π 2 ( B � G ) / ∼ ] • (10, Hatakenaka-N.) G ) → H gr ∀ a grp G , we constructed an epi. π 2 ( B � 3 ( G ; Z ). We further related the link invariant to the Dijkgraaf- Witten inv. of 3-mfds.

  20. (II) Lefshetz fibrations over the 2-sphere. Dehn quandle D g := { simple closed curves γ ⊂ Σ g } / isotopy x ∗ y := Dehn twist of x along y . Lem. (Y. Matsumoto, D. Yetter) ρ { LF over S 2 } { Q ( S 2 , n) → D g qnd. hom. | ρ ( c 1 ) · · · ρ ( c n ) = 1 M g } 1:1 ← → “ conjugacy actions ” Q ( S 2 , n) � B n ( S 2 ) , isom. D g � M g

  21. (II) Lefshetz fibrations over the 2-sphere. Dehn quandle D g := { simple closed curves γ ⊂ Σ g } / isotopy x ∗ y := Dehn twist of x along y . Lem. (Y. Matsumoto, D. Yetter) ρ { LF over S 2 } { Q ( S 2 , n) → D g qnd. hom. | ρ ( c 1 ) · · · ρ ( c n ) = 1 M g } 1:1 ← → “ conjugacy actions ” Q ( S 2 , n) � B n ( S 2 ) , isom. D g � M g

  22. T n,n (II) Lefshetz fibrations over the 2-sphere. Dehn quandle D g := { simple closed curves γ ⊂ Σ g } / isotopy x ∗ y := Dehn twist of x along y . Lem. (Y. Matsumoto, D. Yetter) ρ { LF over S 2 } { Q ( S 2 , n) → D g qnd. hom. | ρ ( c 1 ) · · · ρ ( c n ) = 1 M g } 1:1 ← → “ conjugacy actions ” Q ( S 2 , n) � B n ( S 2 ) , isom. D g � M g ρ { Q ( S 3 , T n,n ) → D g qnd. hom. | ρ ( c 1 ) · · · ρ ( c n ) = 1 M g } 1:1 Lem. (N.) ← → “ conjugacy actions ” Q ( S 3 , T n,n ) � B n ( S 2 ) , D g � M g ∃ ϕ ∈ H 2 ( B D g ; G ) s.t. Thm. (11, N.) ∀ E : LF over S 2 , ⟨ ϕ, [ Q ( S 3 , T n,n )] ⟩ = Sign( E ) − n .

  23. Thank you

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend