enumeration of racks quandles and bruck loops
play

Enumeration of racks, quandles and Bruck loops Petr Vojt echovsk y - PowerPoint PPT Presentation

Enumeration of racks, quandles and Bruck loops Petr Vojt echovsk y University of Denver Loops 19 Budapest University of Technology and Economics, Hungary July 713, 2019 Petr Vojt echovsk y (University of Denver) Enumeration


  1. Introduction The methods Challenges: • deficient or non-existent theory of presentations • no standard representation theory (permutations, matrices) • explicit isomorphism checks are slow Main ideas: • reduce the problem to group actions or, better, linear algebra • act by a suitable group G on a suitable parameter space X ; study orbits, stabilizers and invariant subsets: | G | 1 � � | X g | | X | = | G x | , | X / G | = | G | x ∈ X / G g ∈ G • develop extension theory, central extensions, cocycles; solve large systems of linear equations Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 10 / 66

  2. Outline 1 Introduction 2 Quandles Coloring arcs of oriented knots Knot quandles and the Yang-Baxter equation Asymptotic growth and enumeration results Main ingredients of the enumeration Connected quandles 3 Bruck loops Correspondences Bruck loops of odd prime power order The case p 3 4 Other recent enumeration results Bol loops of order pq Small distributive and medial quasigroups

  3. Quandles | Coloring arcs of oriented knots Coloring rules Color a diagram of an oriented knot K by an algebra ( X , ⊳ , � ) according to these rules: Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 12 / 66

  4. Quandles | Coloring arcs of oriented knots Coloring rules Color a diagram of an oriented knot K by an algebra ( X , ⊳ , � ) according to these rules: y ⊳ x y � x y y x x Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 12 / 66

  5. Quandles | Coloring arcs of oriented knots Coloring rules Color a diagram of an oriented knot K by an algebra ( X , ⊳ , � ) according to these rules: y ⊳ x y � x y y x x Which properties must hold for ⊳ , � so that the coloring be invariant under Reidemeister moves? Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 12 / 66

  6. Quandles | Coloring arcs of oriented knots Reidemeister I There are many oriented Reidemeister moves, but all are combinations of the following five. Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 13 / 66

  7. Quandles | Coloring arcs of oriented knots Reidemeister I There are many oriented Reidemeister moves, but all are combinations of the following five. x ⊳ x x � x x x x x Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 13 / 66

  8. Quandles | Coloring arcs of oriented knots Reidemeister I There are many oriented Reidemeister moves, but all are combinations of the following five. x ⊳ x x � x x x x x So far we have x ⊳ x = x = x � x . Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 13 / 66

  9. Quandles | Coloring arcs of oriented knots Reidemeister II y x y x ( y � x ) ⊳ x y ⊳ x y � x y x ( y ⊳ x ) � x y x Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 14 / 66

  10. Quandles | Coloring arcs of oriented knots Reidemeister II y x y x ( y � x ) ⊳ x y ⊳ x y � x y x ( y ⊳ x ) � x y x So far we have x ⊳ x = x = x � x , ( y ⊳ x ) � x = y and ( y � x ) ⊳ x = y . x ) − 1 and we don’t need to keep track of � anymore. Hence R ⊳ x = ( R � Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 14 / 66

  11. Quandles | Coloring arcs of oriented knots Reidemeister III y y z z x z ⊳ x z ⊳ y x y ⊳ x ( z ⊳ y ) ⊳ x y ⊳ x ( z ⊳ x ) ⊳ ( y ⊳ x ) Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 15 / 66

  12. Quandles | Coloring arcs of oriented knots Reidemeister III y y z z x z ⊳ x z ⊳ y x y ⊳ x ( z ⊳ y ) ⊳ x y ⊳ x ( z ⊳ x ) ⊳ ( y ⊳ x ) Altogether, we have: ( X , ⊳ ) such that x ⊳ x = x and R x ∈ Aut ( X , ⊳ ). Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 15 / 66

  13. Quandles | Knot quandles and the Yang-Baxter equation Quandles and racks Definition A groupoid ( Q , · ) is a ( right ) rack if • R x is a bijection of Q for every x ∈ Q , • ( yx )( zx ) = ( yz ) x for every x , y , z ∈ Q . A rack ( Q , · ) is a quandle if • xx = x for every x ∈ Q . Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 16 / 66

  14. Quandles | Knot quandles and the Yang-Baxter equation Knot quandles • The quandle freely generated by arcs of K with presenting relations corresponding to the coloring rules is the knot quandle of Joyce and Matveev. It is a complete invariant of oriented knots up to mirror image. Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 17 / 66

  15. Quandles | Knot quandles and the Yang-Baxter equation Knot quandles • The quandle freely generated by arcs of K with presenting relations corresponding to the coloring rules is the knot quandle of Joyce and Matveev. It is a complete invariant of oriented knots up to mirror image. • Not all assignments of quandle elements to arcs are consistent. Counting possible colorings by a given finite quandle is a good invariant of oriented knots. Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 17 / 66

  16. Quandles | Knot quandles and the Yang-Baxter equation Knot quandles • The quandle freely generated by arcs of K with presenting relations corresponding to the coloring rules is the knot quandle of Joyce and Matveev. It is a complete invariant of oriented knots up to mirror image. • Not all assignments of quandle elements to arcs are consistent. Counting possible colorings by a given finite quandle is a good invariant of oriented knots. • Some non-quandles might give a consistent coloring, e.g., when not all elements are used as colors. Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 17 / 66

  17. Quandles | Knot quandles and the Yang-Baxter equation Set-theoretical solutions to the Yang-Baxter equation The Yang-Baxter equation is the equation ( σ ⊗ 1)(1 ⊗ σ )( σ ⊗ 1) = (1 ⊗ σ )( σ ⊗ 1)(1 ⊗ σ ) (YBE) in any context where the syntax makes sense. Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 18 / 66

  18. Quandles | Knot quandles and the Yang-Baxter equation Set-theoretical solutions to the Yang-Baxter equation The Yang-Baxter equation is the equation ( σ ⊗ 1)(1 ⊗ σ )( σ ⊗ 1) = (1 ⊗ σ )( σ ⊗ 1)(1 ⊗ σ ) (YBE) in any context where the syntax makes sense. A set-theoretical solution is any function σ : X × X → X × X such that (YBE) holds as an equality of functions X × X × X → X × X × X . Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 18 / 66

  19. Quandles | Knot quandles and the Yang-Baxter equation Set-theoretical solutions to the Yang-Baxter equation The Yang-Baxter equation is the equation ( σ ⊗ 1)(1 ⊗ σ )( σ ⊗ 1) = (1 ⊗ σ )( σ ⊗ 1)(1 ⊗ σ ) (YBE) in any context where the syntax makes sense. A set-theoretical solution is any function σ : X × X → X × X such that (YBE) holds as an equality of functions X × X × X → X × X × X . Given a quandle ( X , ⊳ ), the function σ ( x , y ) = ( y , x ⊳ y ) is a set-theoretical solution. Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 18 / 66

  20. Quandles | Knot quandles and the Yang-Baxter equation Set-theoretical solutions to the Yang-Baxter equation The Yang-Baxter equation is the equation ( σ ⊗ 1)(1 ⊗ σ )( σ ⊗ 1) = (1 ⊗ σ )( σ ⊗ 1)(1 ⊗ σ ) (YBE) in any context where the syntax makes sense. A set-theoretical solution is any function σ : X × X → X × X such that (YBE) holds as an equality of functions X × X × X → X × X × X . Given a quandle ( X , ⊳ ), the function σ ( x , y ) = ( y , x ⊳ y ) is a set-theoretical solution. • David Stanovsk´ y will report on this and other classes of set-theoretical solutions of the Yang-Baxter equation. Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 18 / 66

  21. Quandles | Asymptotic growth and enumeration results Asymptotic growth Let q ( n ) denote the number of quandles of order n up to isomorphism, and r ( n ) the number of quandles up to isomorphism. Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 19 / 66

  22. Quandles | Asymptotic growth and enumeration results Asymptotic growth Let q ( n ) denote the number of quandles of order n up to isomorphism, and r ( n ) the number of quandles up to isomorphism. Theorem (Blackburn 2013) For all sufficiently large orders n, we have 2 n 2 / 4 − o ( n log( n )) ≤ q ( n ) ≤ r ( n ) ≤ 2 cn 2 , where c is a constant approximately equal to 1 . 5566 . Theorem (Ashford and Riordan 2017) For every ε > 0 and for all sufficiently large orders n we have 2 n 2 / 4 − ε ≤ q ( n ) ≤ r ( n ) ≤ 2 n 2 / 4+ ε . Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 19 / 66

  23. Quandles | Asymptotic growth and enumeration results Enumeration results n q ( n ) r ( n ) comments 1 1 1 2 1 2 3 3 6 4 7 19 5 22 74 6 73 353 7 298 2080 easy; add column, test, backtrack Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 20 / 66

  24. Quandles | Asymptotic growth and enumeration results Enumeration results n q ( n ) r ( n ) comments 1 1 1 2 1 2 3 3 6 4 7 19 5 22 74 6 73 353 7 298 2080 easy; add column, test, backtrack 8 1581 16023 McCarron 9 11079 159526 q (9) McCarron Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 20 / 66

  25. Quandles | Asymptotic growth and enumeration results Enumeration results n q ( n ) r ( n ) comments 1 1 1 2 1 2 3 3 6 4 7 19 5 22 74 6 73 353 7 298 2080 easy; add column, test, backtrack 8 1581 16023 McCarron 9 11079 159526 q (9) McCarron 10 102771 2093244 Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 20 / 66

  26. Quandles | Asymptotic growth and enumeration results Enumeration results n q ( n ) r ( n ) comments 1 1 1 2 1 2 3 3 6 4 7 19 5 22 74 6 73 353 7 298 2080 easy; add column, test, backtrack 8 1581 16023 McCarron 9 11079 159526 q (9) McCarron 10 102771 2093244 11 1275419 36265070 Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 20 / 66

  27. Quandles | Asymptotic growth and enumeration results Enumeration results n q ( n ) r ( n ) comments 1 1 1 2 1 2 3 3 6 4 7 19 5 22 74 6 73 353 7 298 2080 easy; add column, test, backtrack 8 1581 16023 McCarron 9 11079 159526 q (9) McCarron 10 102771 2093244 11 1275419 36265070 12 21101335 836395102 Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 20 / 66

  28. Quandles | Asymptotic growth and enumeration results Enumeration results n q ( n ) r ( n ) comments 1 1 1 2 1 2 3 3 6 4 7 19 5 22 74 6 73 353 7 298 2080 easy; add column, test, backtrack 8 1581 16023 McCarron 9 11079 159526 q (9) McCarron 10 102771 2093244 11 1275419 36265070 12 21101335 836395102 BUT WAIT, THERE IS MORE Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 20 / 66

  29. Quandles | Asymptotic growth and enumeration results Enumeration results n q ( n ) r ( n ) comments 1 1 1 2 1 2 3 3 6 4 7 19 5 22 74 6 73 353 7 298 2080 easy; add column, test, backtrack 8 1581 16023 McCarron 9 11079 159526 q (9) McCarron 10 102771 2093244 11 1275419 36265070 12 21101335 836395102 BUT WAIT, THERE IS MORE 13 469250886 25794670618 V + Yang Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 20 / 66

  30. Quandles | Main ingredients of the enumeration Isomorphisms and conjugation I Let’s switch to left racks and quandles. So L x are bijections and x ( yz ) = ( xy )( xz ) holds. Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 21 / 66

  31. Quandles | Main ingredients of the enumeration Isomorphisms and conjugation I Let’s switch to left racks and quandles. So L x are bijections and x ( yz ) = ( xy )( xz ) holds. Definition For a rack X let Mlt ℓ ( X ) = � L x : x ∈ X � ≤ S X be the left multiplication group of X . Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 21 / 66

  32. Quandles | Main ingredients of the enumeration Isomorphisms and conjugation II Proposition (folklore for left quasigroups, explicitly in V+Y) Let X be a set. (i) If ( X , ∗ ) , ( X , ◦ ) are isomorphic racks then Mlt ℓ ( X , ∗ ) , Mlt ℓ ( X , ◦ ) are conjugate subgroups of S X . (ii) Let G, H be conjugate subgroups of S X . Then the set of racks on X with left multiplication group equal to G contains the same isomorphism types as the set of racks on X with left multiplication group equal to H. (iii) Let ( X , ∗ ) , ( X , ◦ ) be two racks with Mlt ℓ ( X , ∗ ) = G = Mlt ℓ ( X , ◦ ) . Then ( X , ∗ ) , ( X , ◦ ) are isomorphic if and only if there is an isomorphism f : ( X , ∗ ) → ( X , ◦ ) satisfying f ∈ N S X ( G ) . Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 22 / 66

  33. Quandles | Main ingredients of the enumeration Conjugacy classes of subgroups of symmetric groups It is a nontrivial problem to calculate subgroups of S n up to conjugation. The following takes several hours in GAP: 1 2 3 4 5 6 7 8 9 10 11 12 13 n s ( n ) 1 2 4 11 19 56 96 296 554 1593 3094 10723 20832 Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 23 / 66

  34. Quandles | Main ingredients of the enumeration Conjugacy classes of subgroups of symmetric groups It is a nontrivial problem to calculate subgroups of S n up to conjugation. The following takes several hours in GAP: 1 2 3 4 5 6 7 8 9 10 11 12 13 n s ( n ) 1 2 4 11 19 56 96 296 554 1593 3094 10723 20832 State of the art: Theorem (Holt) There are 7598016157515302757 subgroups of S 18 , partitioned into 7274651 conjugacy classes. Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 23 / 66

  35. Quandles | Main ingredients of the enumeration Rack and quandle envelopes I • Let G be a subgroup of S X . • Let X / G be orbit representatives of the natural action of G on X . • A rack on X with G = Mlt ℓ ( X ) ≤ Aut ( X ) is determined by ( L x : x ∈ X / G ): Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 24 / 66

  36. Quandles | Main ingredients of the enumeration Rack and quandle envelopes I • Let G be a subgroup of S X . • Let X / G be orbit representatives of the natural action of G on X . • A rack on X with G = Mlt ℓ ( X ) ≤ Aut ( X ) is determined by ( L x : x ∈ X / G ): Indeed, if y = xg for some g ∈ G then zL y = zL xg = ( xg ) z = ( x · zg − 1 ) g = zL g x Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 24 / 66

  37. Quandles | Main ingredients of the enumeration Rack and quandle envelopes I • Let G be a subgroup of S X . • Let X / G be orbit representatives of the natural action of G on X . • A rack on X with G = Mlt ℓ ( X ) ≤ Aut ( X ) is determined by ( L x : x ∈ X / G ): Indeed, if y = xg for some g ∈ G then zL y = zL xg = ( xg ) z = ( x · zg − 1 ) g = zL g x Which tuples Λ = ( λ x ∈ S X : x ∈ X / G ) correspond to racks on X satisfying λ x = L x for every x ∈ X / G and Mlt ℓ ( X ) = G ? Call such ( G , Λ) a rack envelope . Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 24 / 66

  38. Quandles | Main ingredients of the enumeration Rack and quandle envelopes II Theorem (Blackburn, V+Y) Let G ≤ S X and Λ = ( λ x ∈ S X : x ∈ X / G ) . Then ( G , Λ) is a rack envelope iff (i) λ x ∈ C G ( G x ) for every x ∈ X / G, and x ∈ X / G λ G (ii) � x generates G. Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 25 / 66

  39. Quandles | Main ingredients of the enumeration Rack and quandle envelopes II Theorem (Blackburn, V+Y) Let G ≤ S X and Λ = ( λ x ∈ S X : x ∈ X / G ) . Then ( G , Λ) is a rack envelope iff (i) λ x ∈ C G ( G x ) for every x ∈ X / G, and x ∈ X / G λ G (ii) � x generates G. Proof. ⇐ : We must set L y = λ g y x , where g y ∈ G is such that xg y = y . Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 25 / 66

  40. Quandles | Main ingredients of the enumeration Rack and quandle envelopes II Theorem (Blackburn, V+Y) Let G ≤ S X and Λ = ( λ x ∈ S X : x ∈ X / G ) . Then ( G , Λ) is a rack envelope iff (i) λ x ∈ C G ( G x ) for every x ∈ X / G, and x ∈ X / G λ G (ii) � x generates G. Proof. ⇐ : We must set L y = λ g y x , where g y ∈ G is such that xg y = y . Well-defined: xg = xh implies gh − 1 ∈ G x so λ gh − 1 = λ x by (i). x Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 25 / 66

  41. Quandles | Main ingredients of the enumeration Rack and quandle envelopes II Theorem (Blackburn, V+Y) Let G ≤ S X and Λ = ( λ x ∈ S X : x ∈ X / G ) . Then ( G , Λ) is a rack envelope iff (i) λ x ∈ C G ( G x ) for every x ∈ X / G, and x ∈ X / G λ G (ii) � x generates G. Proof. ⇐ : We must set L y = λ g y x , where g y ∈ G is such that xg y = y . Well-defined: xg = xh implies gh − 1 ∈ G x so λ gh − 1 = λ x by (i). x Mlt ℓ ( X ) = � λ G x : x ∈ X / G � = G by (ii). Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 25 / 66

  42. Quandles | Main ingredients of the enumeration Rack and quandle envelopes II Theorem (Blackburn, V+Y) Let G ≤ S X and Λ = ( λ x ∈ S X : x ∈ X / G ) . Then ( G , Λ) is a rack envelope iff (i) λ x ∈ C G ( G x ) for every x ∈ X / G, and x ∈ X / G λ G (ii) � x generates G. Proof. ⇐ : We must set L y = λ g y x , where g y ∈ G is such that xg y = y . Well-defined: xg = xh implies gh − 1 ∈ G x so λ gh − 1 = λ x by (i). x Mlt ℓ ( X ) = � λ G x : x ∈ X / G � = G by (ii). Rack: For u , v , w let x , g v ∈ G be such that xg v = v . Then xg v L u = vL u = u ∗ v so L u ∗ v = λ g v L u = ( λ g v x ) L u = L L u v , so x ( u ∗ v ) ∗ ( u ∗ w ) = wL u L u ∗ v = wL u L L u v = wL v L u = u ∗ ( v ∗ w ). Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 25 / 66

  43. Quandles | Main ingredients of the enumeration Rack and quandle envelopes III Theorem (V+Y, special case by Hulpke + Stanovsk´ y + V) Let G ≤ S X and Λ = ( λ x ∈ S X : x ∈ X / G ) . Then ( G , Λ) is a quandle envelope iff (i) λ x ∈ Z ( G x ) for every x ∈ X / G, and x ∈ X / G λ G (ii) � x generates G. Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 26 / 66

  44. Quandles | Main ingredients of the enumeration Action on parameter spaces For a group G ≤ S X let � � Par r ( G ) = C G ( G x ) , Par q ( G ) = Z ( G x ) . x ∈ X / G x ∈ X / G Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 27 / 66

  45. Quandles | Main ingredients of the enumeration Action on parameter spaces For a group G ≤ S X let � � Par r ( G ) = C G ( G x ) , Par q ( G ) = Z ( G x ) . x ∈ X / G x ∈ X / G The isomorphism relation induces an action of N S X ( G ) on Par r ( G ) as follows: Given f ∈ N S X ( G ) and ( κ x : x ∈ X / G ) = ( λ x : x ∈ X / G ) f , we have y ) g y ) f κ x = (( λ yg − 1 for every x ∈ X / G , where y = xf − 1 and zg y = y for every z ∈ X / G . Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 27 / 66

  46. Quandles | Main ingredients of the enumeration Visualizing the action on rack/quandle folders For f ∈ N S X ( G ) construct a digraph Γ r ( G , f ) as follows: • vertex set is the formal disjoint union of C G ( G x ) for x ∈ X / G , and κ x = (( λ z ) g y ) f . • there is an edge λ z → κ x iff y = xf − 1 , z = yg − 1 y Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 28 / 66

  47. Quandles | Main ingredients of the enumeration Visualizing the action on rack/quandle folders For f ∈ N S X ( G ) construct a digraph Γ r ( G , f ) as follows: • vertex set is the formal disjoint union of C G ( G x ) for x ∈ X / G , and κ x = (( λ z ) g y ) f . • there is an edge λ z → κ x iff y = xf − 1 , z = yg − 1 y Every vertex has outdegree equal to 1. Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 28 / 66

  48. Quandles | Main ingredients of the enumeration Visualizing the action on rack/quandle folders For f ∈ N S X ( G ) construct a digraph Γ r ( G , f ) as follows: • vertex set is the formal disjoint union of C G ( G x ) for x ∈ X / G , and κ x = (( λ z ) g y ) f . • there is an edge λ z → κ x iff y = xf − 1 , z = yg − 1 y Every vertex has outdegree equal to 1. To see the action of f , select one vertex in each C G ( G x ) and follow the edges. Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 28 / 66

  49. Quandles | Main ingredients of the enumeration Example X = { 1 , . . . , 5 } , G = � (1 , 2)(3 , 4 , 5) � ∼ = C 6 , f = (1 , 2)(4 , 5). Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 29 / 66

  50. Quandles | Main ingredients of the enumeration Example X = { 1 , . . . , 5 } , G = � (1 , 2)(3 , 4 , 5) � ∼ = C 6 , f = (1 , 2)(4 , 5). Then X / G = { 1 , 3 } and we get: Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 29 / 66

  51. Quandles | Main ingredients of the enumeration Another example X = { 1 , . . . , 7 } , G = � (1 , 2) , (1 , 2 , 3) , (4 , 5) , (4 , 5 , 6) � ∼ = S 3 × S 3 , f = (1 , 5)(2 , 4)(3 , 6). Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 30 / 66

  52. Quandles | Main ingredients of the enumeration Another example X = { 1 , . . . , 7 } , G = � (1 , 2) , (1 , 2 , 3) , (4 , 5) , (4 , 5 , 6) � ∼ = S 3 × S 3 , f = (1 , 5)(2 , 4)(3 , 6). Then X / G = { 1 , 4 , 7 } and we get: Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 30 / 66

  53. Quandles | Main ingredients of the enumeration Another example X = { 1 , . . . , 7 } , G = � (1 , 2) , (1 , 2 , 3) , (4 , 5) , (4 , 5 , 6) � ∼ = S 3 × S 3 , f = (1 , 5)(2 , 4)(3 , 6). Then X / G = { 1 , 4 , 7 } and we get: • Fixpoints of f are easy to see. Namely, a selection of λ x ∈ C G ( G x ) that form a cycle in each connected component. • Hence fixpoints are easily counted and Burnside’s Lemma applies. • Unfortunately, this does not work for envelopes because � λ G x : x ∈ X / G � = G must be tested in each case. Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 30 / 66

  54. Quandles | Main ingredients of the enumeration Comments on the action Difficulties : • Par r ( G ) can be large, especially if G is an elementary abelian 2-group. There is a nonabelian G ≤ S 13 for which Par r ( G ) has over 2 billion elements. • Not every ( λ G x : x ∈ X / G ) ∈ Par r ( G ) generates G . This must be explicitly tested. Indexing breaks down on the relevant subset. • Not clear how to use Burnside’s Lemma efficiently for envelopes. Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 31 / 66

  55. Quandles | Main ingredients of the enumeration Comments on the action Difficulties : • Par r ( G ) can be large, especially if G is an elementary abelian 2-group. There is a nonabelian G ≤ S 13 for which Par r ( G ) has over 2 billion elements. • Not every ( λ G x : x ∈ X / G ) ∈ Par r ( G ) generates G . This must be explicitly tested. Indexing breaks down on the relevant subset. • Not clear how to use Burnside’s Lemma efficiently for envelopes. What was done: • Careful indexing and ad hoc orbit calculations to save memory. • Calculating the action of f : κ x depends only on y = xf − 1 and λ yg − 1 y , so the action can be precalculated on “pairs” rather than on | X / G | -tuples. Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 31 / 66

  56. Quandles | Main ingredients of the enumeration Results The algorithm: • confirms all previously known results r ( ≤ 8), q ( ≤ 9) in 3 seconds, Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 32 / 66

  57. Quandles | Main ingredients of the enumeration Results The algorithm: • confirms all previously known results r ( ≤ 8), q ( ≤ 9) in 3 seconds, • takes about a day to find isomorphism types for r (11) and q (12), Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 32 / 66

  58. Quandles | Main ingredients of the enumeration Results The algorithm: • confirms all previously known results r ( ≤ 8), q ( ≤ 9) in 3 seconds, • takes about a day to find isomorphism types for r (11) and q (12), • crashes on r (12), r (13) and q (13), Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 32 / 66

  59. Quandles | Main ingredients of the enumeration Results The algorithm: • confirms all previously known results r ( ≤ 8), q ( ≤ 9) in 3 seconds, • takes about a day to find isomorphism types for r (11) and q (12), • crashes on r (12), r (13) and q (13), • takes 3 weeks to determine isomorphism types of racks of order 13 with nonabelian left multiplication groups. Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 32 / 66

  60. Quandles | Main ingredients of the enumeration Results The algorithm: • confirms all previously known results r ( ≤ 8), q ( ≤ 9) in 3 seconds, • takes about a day to find isomorphism types for r (11) and q (12), • crashes on r (12), r (13) and q (13), • takes 3 weeks to determine isomorphism types of racks of order 13 with nonabelian left multiplication groups. Lemma A rack X is 2 -reductive (that is, ( xy ) y = y) if and only if Mlt ℓ ( X ) is abelian. Jedliˇ cka, Pilitowska, Stanovsk´ y and Zamojska-Dzienio used affine meshes to construct all 2-reductive racks, in principle. They use Burnside’s Lemma efficiently to count 2-reductive racks up to n ≤ 14. Using their counts for the abelian case, we determined r (12), r (13) and q (13). Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 32 / 66

  61. Quandles | Connected quandles Connected quandles A quandle X is connected iff Mlt ℓ ( X ) acts transitively on X . Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 33 / 66

  62. Quandles | Connected quandles Connected quandles A quandle X is connected iff Mlt ℓ ( X ) acts transitively on X . Theorem (Hulpke, Stanovsk´ y, V) There is a one-to-one correspondence between connected quandles with Mlt ℓ ( X ) = G and quandle envelopes ( G , ( λ x )) , where λ x ∈ Z ( G x ) and � λ G x � = G. Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 33 / 66

  63. Quandles | Connected quandles Connected quandles A quandle X is connected iff Mlt ℓ ( X ) acts transitively on X . Theorem (Hulpke, Stanovsk´ y, V) There is a one-to-one correspondence between connected quandles with Mlt ℓ ( X ) = G and quandle envelopes ( G , ( λ x )) , where λ x ∈ Z ( G x ) and � λ G x � = G. Search for connected quandles was carried out independently by H+S+V and by Leandro Vendramin (University of Buenos Aires). Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 33 / 66

  64. Quandles | Connected quandles Connected quandles: Results n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 q ( n ) 1 0 1 1 3 2 5 3 8 1 9 10 11 0 7 9 ℓ ( n ) 1 0 1 1 3 0 5 2 8 0 9 1 11 0 5 9 a ( n ) 1 0 1 1 3 0 5 2 8 0 9 1 11 0 3 9 n 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 q ( n ) 15 12 17 10 9 0 21 42 34 0 65 13 27 24 29 17 ℓ ( n ) 15 0 17 3 7 0 21 2 34 0 62 7 27 0 29 8 a ( n ) 15 0 17 3 5 0 21 2 34 0 30 5 27 0 29 8 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 n q ( n ) 11 0 15 73 35 0 13 33 39 26 41 9 45 0 45 ℓ ( n ) 11 0 15 9 35 0 13 6 39 0 41 9 36 0 45 a ( n ) 9 0 15 8 35 0 11 6 39 0 41 9 24 0 45 Table: The numbers q ( n ) of connected quandles, ℓ ( n ) of latin quandles, and a ( n ) of connected affine quandles of size n ≤ 47 up to isomorphism. Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 34 / 66

  65. Outline 1 Introduction 2 Quandles Coloring arcs of oriented knots Knot quandles and the Yang-Baxter equation Asymptotic growth and enumeration results Main ingredients of the enumeration Connected quandles 3 Bruck loops Correspondences Bruck loops of odd prime power order The case p 3 4 Other recent enumeration results Bol loops of order pq Small distributive and medial quasigroups

  66. Bruck loops Correspondences Latin and involutory quandles Definition A quandle ( Q , · ) is • latin if also all right translations R x : Q → Q , y �→ yx are bijections of Q , Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 36 / 66

  67. Bruck loops Correspondences Latin and involutory quandles Definition A quandle ( Q , · ) is • latin if also all right translations R x : Q → Q , y �→ yx are bijections of Q , • involutory if L 2 x = 1, i.e., x ( xy ) = y for every x , y ∈ Q . Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 36 / 66

  68. Bruck loops Correspondences Division notation In a latin quandle, we will denote by x \ y = L − 1 x ( y ) the left division operation and by y / x = R − 1 x ( y ) the right division operation. Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 37 / 66

  69. Bruck loops Correspondences Division notation In a latin quandle, we will denote by x \ y = L − 1 x ( y ) the left division operation and by y / x = R − 1 x ( y ) the right division operation. • In an involutory quandle, we have L − 1 = L x due to L 2 x = 1, and thus x x \ y = xy . Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 37 / 66

  70. Bruck loops Correspondences Division notation In a latin quandle, we will denote by x \ y = L − 1 x ( y ) the left division operation and by y / x = R − 1 x ( y ) the right division operation. • In an involutory quandle, we have L − 1 = L x due to L 2 x = 1, and thus x x \ y = xy . • A finite involutory quandle is necessarily of odd order. (Proof: Consider orbits of any given L x .) Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 37 / 66

  71. Bruck loops Correspondences Bol and Bruck loops Definition A loop ( Q , · ) is ( left ) Bol if x ( y ( xz )) = ( x ( yx )) z . Equivalently, L x L y L x is a left translation for every x , y ∈ Q . Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 38 / 66

  72. Bruck loops Correspondences Bol and Bruck loops Definition A loop ( Q , · ) is ( left ) Bol if x ( y ( xz )) = ( x ( yx )) z . Equivalently, L x L y L x is a left translation for every x , y ∈ Q . Definition A loop ( Q , · ) is ( left ) Bruck if it is left Bol and satisfies ( xy ) − 1 = x − 1 y − 1 . Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 38 / 66

  73. Bruck loops Correspondences Notes on Bruck loops • Bruck loops form a well-studied variety of loops. • They motivated Glauberman to prove several key results for the classification of finite simple groups. • Three-dimensional vectors under Einstein relativistic vector addition form a non-associative Bruck loop. • Due to the below correspondence with involutory latin quandles, uniquely 2-divisible Bruck loops can also be seen as solutions to (YBE). Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 39 / 66

  74. Bruck loops Correspondences Notes on Bruck loops • Bruck loops form a well-studied variety of loops. • They motivated Glauberman to prove several key results for the classification of finite simple groups. • Three-dimensional vectors under Einstein relativistic vector addition form a non-associative Bruck loop. • Due to the below correspondence with involutory latin quandles, uniquely 2-divisible Bruck loops can also be seen as solutions to (YBE). A groupoid ( Q , · ) is uniquely 2 -divisible if the squaring map x �→ x 2 is a bijection of Q . Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 39 / 66

  75. Bruck loops Correspondences Involutory latin quandles versus U2D Bruck loops Theorem (Kikkawa, Robinson) Let Q be a set and let e ∈ Q. There is a one-to-one correspondence between involutory latin quandles defined on Q and uniquely 2 -divisible Bruck loops defined on Q with identity element e. In more detail: (i) If ( Q , · ) is an involutory latin quandle then ( Q , +) defined by x + y = ( x / e )( e \ y ) = ( x / e )( ey ) is a uniquely 2 -divisible Bruck loop with identity element e. (ii) If ( Q , +) is a uniquely 2 -divisible Bruck loop with identity e then ( Q , · ) defined by xy = ( x + x ) − y = 2 x − y is an involutory latin quandle. (iii) The two mappings are mutual inverses. Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 40 / 66

  76. Bruck loops Correspondences Automorphic loops and Γ-loops Definition A loop Q is automorphic of Inn ( Q ) ≤ Aut ( Q ). Lots of recent results on automorphic loops by Grishkov, Jedliˇ cka, Kinyon, Nagy, V. Petr Vojtˇ echovsk´ y (University of Denver) Enumeration Loops ’19 41 / 66

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend