global existence and asymptotic behavior for a
play

Global Existence and Asymptotic Behavior for a Compressible Energy - PowerPoint PPT Presentation

Global Existence and Asymptotic Behavior for a Compressible Energy Transport Model Yong LI Department of Mathematical Sciences, Tsinghua University BEIJING, P. R. CHINA Joint with Ling Hsiao The energy transport model is a degenerate


  1. Global Existence and Asymptotic Behavior for a Compressible Energy Transport Model Yong LI Department of Mathematical Sciences, Tsinghua University BEIJING, P. R. CHINA Joint with Ling Hsiao

  2. The energy transport model is a degenerate quasi-linear cross diffusion parabolic system with principal part in divergence form, the common form is governed by  ∂   ∂tn ( µ, T ) − div J n = 0 ,      ∂ (1) ∂tU ( µ, T ) − div J w = −∇ V · J n + W ( µ, T ) ,        λ 2 △ V = n − b ( x ) . Where µ , T are chemical potential of the electrons and the electron temperature respectively, V is the electrostatic po- tential, n ( µ, T ) is the electron density, U ( µ, T ) is the density of the internal energy, λ is the scaled Debye length, b ( x ) is the doping profile which represents the background of the device, 2

  3. W ( µ, T ) is the energy relaxation term satisfying W ( µ, T )( T − T 0 ) ≤ 0 , the positive constant T 0 is the lattice temperature, J n is the carrier flux density and J w is the energy flux density, which are given by  � � � � � µ � + ∇ V − 1    J n = L 11 ∇ + L 12 ∇ ,   T T T � � � � � µ �  + ∇ V − 1    J w = L 21 ∇ + L 22 ∇ ,  T T T L is the diffusion matrix, � L 11 � L 12 L = . L 21 L 22 3

  4. We consider the following relations for n ( µ, T ) and U ( µ, T ), which derived from the Boltzmann statistics, � µ � 1 γ − 1 exp n ( µ, T ) = T , T � µ � 1 γ γ − 1 exp U ( µ, T ) = γ − 1 T . T The energy relaxation term W ( µ, T ) is given by � µ � T 0 − T 1 1 γ − 1 exp W ( µ, T ) = γ − 1 T , T ε the diffusion matrix L is a positive semidefinite matrix,   γT 1 � µ � γ γ − 1   γ − 1 exp   L = ( L ij ) = εT  .  γ 2 T 2 γT T γ − 1 ( γ − 1) 2 4

  5. We could rewritten the above energy transport model as the following form:  n t − ε ∇ · [ ∇ ( nT ) − n � E ] = 0 ,     � nT � γT � �     γ − 1[ ∇ ( nT ) − n �  − ε ∇ · E ]  γ − 1 t (2)  E − n ( T − T 0 )   = ε [ n � E − ∇ ( nT )] · �  ε ( γ − 1) ,       λ 2 ∆ V = n − b ( x ) , � E = ∇ V. Where ε is the energy relaxation time, and the adiabatic ex- ponent γ > 1. The diffusion matrix L satisfying   γT 1 γ − 1     L = ( L ij ) = εnT  .  γ 2 T 2 γT ( γ − 1) 2 γ − 1 γ 2 ( γ − 1) 2 T 2 . Eigenvalues: µ 1 = 0 , µ 2 = 1 + 5

  6. ◮ Derivation The model (2) can be derived from the non-isentropic Euler- Poisson system in semiconductors or plasma,  n t + ∇ · ( n� u ) = 0 ,     � �  E − n� u  u ) + ∇ P = n � u ) t + ∇ · ( n� ( n�  u τ p ,  E − W − W 0 u · �  W t + ∇ · ( � uW + � uP ) = n�  ,   τ w    λ 2 ∆ V = n − b ( x ) , �  E = ∇ V, nT u | 2 + W 0 = nT 0 with P = nT, W = n | � γ − 1 ; γ − 1 , τ p , τ w are the momentum and energy relaxation times. This model was introduced in ♦ K. Bl¨ otekjær, IEEE Trans. Electron. Devices , ED-17 (1970), 38-47. ♦ Markowich, Ringhofer and Schmeiser, Semiconductors Equations , 1990. 6

  7. Define τ 2 = τ p << 1 , τ w and consider the following variables transformations, t → t τ w = ε u → τ� τ p = ετ, τ , � u, τ ( n, T, � E ) → ( n, T, � E ) . We rewrite the system as  n τ t + ∇ · ( n τ � u τ ) = 0 ,       E τ − n τ � u τ u τ ⊗ � u τ ) + ∇ ( n τ T τ ) = n τ �  ( τ 2 n τ � u τ ) t + ∇ · ( τ 2 n τ �  ,   ε     � τ 2 � τ 2 u τ | 2 + n τ T τ � u τ � u τ + γn τ T τ u τ | 2 � 2 n τ | � 2 n τ | � t + ∇ · γ − 1 �  γ − 1    � τ 2 �   u τ | 2 + n τ ( T τ − T 0 )  E τ · � u τ − = n τ � 2 n τ | �  ,   ε ( γ − 1)     E τ = n τ − b ( x ) . λ 2 ∇ · � 7

  8. Taking the formal limit as τ → 0, we obtain the compressible energy transport model,  n t − ε ∇ · [ ∇ ( nT ) − n �  E ] = 0 ,    � nT � γT  � �    γ − 1[ ∇ ( nT ) − n �  − ε ∇ · E ]  γ − 1 t (3) E − n ( T − T 0 )   = ε [ n � E − ∇ ( nT )] · �  ε ( γ − 1) ,        λ 2 ∇ · � E = n − b ( x ) . This formal limit has been rigorously justified by ♦ I. Gasser and R. Natalini, Quart.Appl.Math. , LVII, No.2(1999), 269-282. ♦ Y. Li, Acta Math. Sci. , (in press, 2007). 8

  9. ◮ Some Previous Results: (The diffusion matrix L is (uniformly) positive definite) • Numerical results – Chen-Shu-Dutton, Degond-J¨ ungel-Pietra, Jerome-Shu, Souissi-Gnudi, Holst-J¨ ungel-Pietra,... • Steady state – Degond-G ´ e nieys-J¨ ungel, Griepentrog, Xie, Chen-Hsiao • Global existence –The diffusion matrix L is uniformly positive definite Degond-G ´ e nieys-J¨ ungel, J¨ ungel, Al ` ı etc. – The diffusion matrix L just positive definite Chen-Hsiao, Chen-Hsiao-Li 9

  10. Consider the one-dimensional case of model (2) ( ε = λ = T 0 = 1)   n t − [( nT ) x − nE ] x = 0 , J ( x, t ) = nE − ( nT ) x ,       ( nT ) t − { γT [( nT ) x − nE ] } x (4)  = ( γ − 1)[ nE − ( nT ) x ] E − n ( T − 1) ,       E x = n − b ( x ) . The insulated boundary conditions and initial values J ( x, t ) | x =0 , 1 = 0 , T x ( x, t ) | x =0 , 1 = 0 , E (0 , t ) = 0 , (5) n ( x, 0) = n I ( x ) , T ( x, 0) = T I ( x ) , x ∈ Ω , where the initial density n I ( x ) is chosen to satisfy � Ω ( n I − b )( x ) dx = 0 . Then the boundary conditions are n x ( x, t ) | x =0 , 1 = 0 , T x ( x, t ) | x =0 , 1 = 0 , E ( x, t ) | x =0 , 1 = 0 . (6) 10

  11. Introduce the flux as nu = nE − ( nT ) x . So (4) can be rewritten as  n t + ( nu ) x = 0 ,    ( nT ) t + ( γnTu ) x = ( γ − 1) nuE − n ( T − 1) , (7)    E x = n − b ( x ) . The model (7) can be understood as the ”full” compressible Navier-Stokes equations (with a temperature equation),  n t + ( nu ) x = 0 ,       ( nu ) t + ( γnu 2 ) x + ( nT ) x     = γ ( nTu x ) x − [2 + b ( x )] nu + 2 nE − n x    T t + uT x + ( γ − 1) Tu x = ( γ − 1) u 2 − ( T − 1) ,        E x = n − b ( x ) . 11

  12. ◮ The isothermal stationary solution We consider a typical stationary solution ( N , 1 , V ).  ∇N − N∇V = 0 , x ∈ Ω ,   ∆ V = N − b ( x ) , x ∈ Ω ,   ∇V · γ | ∂ Ω = 0 , γ : the unit outer normal vector Assume that 0 < C ≤ b ( x ) ≤ C and b ∈ L ∞ (Ω) , Theorem 1 then the problem has a solution ( N , V ) , and satisfing 0 < C ≤ N ( x ) ≤ C, x ∈ Ω , c ≤ V ( x ) ≤ c, x ∈ Ω , | ∆ V ( x ) | , |∇V ( x ) | , |∇N ( x ) | , | ∆ N ( x ) | ≤ C, x ∈ Ω , where C is a positive constant and c, c are constants. 12

  13. ◮ The GlobalExistence and exponential decay Suppose 0 < C ≤ b ( x ) ≤ C , b ( x ) ∈ C 2 (Ω) and Theorem 2 ( n I ( x ) , T I ( x )) ∈ H 3 (Ω) . There exists a positive constant δ 1 , such that if � n I ( x ) − N ( x ) � H 3 + � T I ( x ) − 1 � H 3 ≤ δ 1 , then the problem (4)-(5) has a unique global solution ( n, T, E ) in Ω × [0 , ∞ ) satisfying � n ( · , t ) − N ( · ) � H 3 + � T ( · , t ) − 1 � H 3 + � E ( · , t ) − V x ( · ) � H 3 ≤ c 0 ( � n ( · , 0) − N ( · ) � H 3 + � T ( · , 0) − 1 � H 3 ) exp ( − ηt ) for some positive constants c 0 and η . In our theorem, the doping profile b ( x ) can be Remark 3 roughly large. 13

  14. ◮ A-priori estimates The 1-D compressible Energy Transport Model (7),  n t + ( nu ) x = 0 ,    ( nT ) t + ( γnTu ) x = ( γ − 1) nuE − n ( T − 1) ,    E x = n − b ( x ) , with nu = nE − ( nT ) x . Setting n = N + N ρ, T = 1 + θ, E = E + ϕ, E = V x , where the stationary solution is ( N , 1 , E ). Introduce the entropy function s as follows θ = (1 + ρ ) γ − 1 (1 + s ) − 1 . 14

  15. Then the model (7) can be rewritten as   ρ t + [(1 + ρ ) u ] x = −E (1 + ρ ) u,      s t + us x = − (1 + ρ ) γ − 1 (1 + s ) − 1     (1 + ρ ) γ − 1 (8)  γ − 1  (1 + ρ ) γ − 1 | u | 2 + ( γ − 1) E (1 + s ) u,   +       ϕ x = N ρ, 1 1 + ρ [(1 + ρ ) γ (1 + s )] x − E [(1 + ρ ) γ − 1 (1 + s ) − 1] . u = ϕ − The corresponding initial data and the boundary conditions, ρ ( x, 0) = N ( x ) − 1 n I ( x ) − 1 , (9) s ( x, 0) = N ( x ) γ − 1 T I ( x ) n I ( x ) − ( γ − 1) − 1 , ρ x | x =0 , 1 = 0 , s x | x =0 , 1 = 0 , ϕ | x =0 , 1 = 0 . (10) 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend