classification results on weighted minihypers
play

Classification results on weighted minihypers Jan De Beule (Ghent - PDF document

Classification results on weighted minihypers Jan De Beule (Ghent University) joint work with: Leo Storme (Ghent University) Optimal codes and related topics 2005 1 Introduction Consider t subspaces PG( t, q ) , t 1 subspaces PG(


  1. Classification results on weighted minihypers Jan De Beule (Ghent University) joint work with: Leo Storme (Ghent University)

  2. Optimal codes and related topics 2005 1 Introduction Consider ǫ t subspaces PG( t, q ) , ǫ t − 1 subspaces PG( t − 1 , q ) , . . . , ǫ 1 subspaces PG(1 , q ) (lines) and ǫ 0 points. The union of this objects is an t t � � { ǫ i v i ; n, q }− minihyper( F, w ) ǫ i v i +1 , i =0 i =1 v i = | PG( i, q ) | = q i +1 − 1 q − 1 Disjoint subspaces give a non-weighted minihyper. By a theorem of Hamada, Helleseth and Maekawa, also the reverse i =0 ǫ i � √ q . is true when � t question: can we prove the same result for weighted minihypers? Jan De Beule, Ghent University

  3. Optimal codes and related topics 2005 2 The planar case The first step is the planar case. What exists for non-weighted minihypers in the plane? Non-weighted { f, m ; 2 , q } minihypers are often called m -fold blocking sets. Theorem 1. (S. Ball [1], K. Metsch) An ǫ 1 -fold blocking set in PG(2 , q ) , ǫ 1 small, not containing a line, has at least ǫ 1 q + √ ǫ 1 q + 1 points. it follows: Lemma 1. An { ǫ 1 ( q + 1) + ǫ 0 , ǫ 1 ; 2 , q } - minihyper ( F, w ) contains a line if ǫ 1 + ǫ 0 � √ q . Can we remove this line and still have a ( ǫ 1 − 1) -fold blocking set? Jan De Beule, Ghent University

  4. Optimal codes and related topics 2005 3 The planar case (continued) Suppose that the { ǫ 1 ( q +1)+ ǫ 0 , ǫ 1 ; 2 , q } - minihyper ( F, w ) contains a line L . • If | ( F, w ) ∩ L | � q + ǫ 1 , reducing the weight of every point of L with one gives a new { ( ǫ 1 − 1)( q + 1) + ǫ 0 , ǫ 1 − 1; 2 , q } - minihyper ( F ′ , w ′ ) . • If q + 1 � | ( F, w ) ∩ L | � q + ǫ 1 − 1 , it is not immediately clear that this procedure works. It is possible that we have to add at most ǫ 1 − 1 points p i again. Jan De Beule, Ghent University

  5. Optimal codes and related topics 2005 4 The planar case (continued) Using polynomial techniques we obtain that L is the only line on p i containing exactly ǫ 1 − 1 points of the new minihyper. But: Lemma 2. (A. Blokhuis, L. Storme and T. Sz˝ onyi [2]) Let ( F, w ) be an { ( ǫ 1 − 1)( q + 1) + c, ǫ 1 − 1; 2 , q } -minihyper, ǫ 1 − 1 + c < q 2 , and let p ∈ F be a point of weight 1 . Then p lies on at least q − c lines intersecting ( F, w ) in ǫ 1 − 1 points. This gives a contradiction, in other words: Theorem 2. An { ( ǫ 1 − 1)( q +1)+ ǫ 0 , ǫ 1 − 1; 2 , q } -minihyper, ǫ 1 + ǫ 0 � √ q , is a sum of ǫ 1 lines and ǫ 0 points. Jan De Beule, Ghent University

  6. Optimal codes and related topics 2005 5 The situation in 3 -space We consider a { ( ǫ 1 − 1)( q + 1) + ǫ 0 , ǫ 1 − 1; 3 , q } -minihyper ( F, w ) , ǫ 1 + ǫ 0 � √ q . Projecting ( F, w ) from a point p �∈ ( F, w ) gives a { ( ǫ ′ 1 − 1)( q + 1) + ǫ ′ 0 , ǫ ′ 1 − 1; 2 , q } - minihyper ( F ′ , w ′ ) . Using that ( F ′ , w ′ ) is a sum of lines and points, we can prove that ( F, w ) is the sum of ǫ 1 lines and ǫ 0 points. Inductively, we can prove: Theorem 3. A { ( ǫ 1 − 1)( q + 1) + ǫ 0 , ǫ 1 − 1; k, q } -minihyper ( F, w ) , ǫ 1 + ǫ 0 � √ q , k � 2 , is a sum of ǫ 1 lines and ǫ 0 points. Jan De Beule, Ghent University

  7. Optimal codes and related topics 2005 6 More parameters We consider now { ǫ 2 ( q 2 + q + 1) + ǫ 1 ( q +1)+ ǫ 0 , ǫ 2 ( q +1)+ ǫ 1 ; k, q } -minihypers ( F, w ) , ǫ 2 + ǫ 1 + ǫ 0 � √ q , k � 3 . Using the results on { ǫ 1 ( q + 1) + ǫ 0 , ǫ 1 ; k, q } -minihypers, and using an induction hypothesis, we prove: An { ǫ 2 ( q 2 + q + 1) + ǫ 1 ( q + Theorem 4. 1) + ǫ 0 , ǫ 2 ( q + 1) + ǫ 1 ; k − 1 , q } -minihyper ( F, w ) , ǫ 2 + ǫ 1 + ǫ 0 � √ q , k � 4 , is a sum of ǫ 2 planes, ǫ 1 lines and ǫ 0 points. Jan De Beule, Ghent University

  8. Optimal codes and related topics 2005 7 The general case We consider a t t � � { ǫ i v i ; k, q }− minihyper( F, w ) ǫ i v i +1 , i =0 i =1 i =0 ǫ i � √ q k � 2 , 1 � t < k, � t Using an induction hypothesis on k , and the obtained characterisation results for smaller t , we can prove that ( F, w ) is a sum of ǫ t t -dimensional subspaces PG( t, q ) , ǫ t − 1 t − 1 -dimensional subspaces PG( t − 1 , q ) , . . . , ǫ 1 lines and ǫ 0 points. Jan De Beule, Ghent University

  9. Optimal codes and related topics 2005 8 References [1] A. Blokhuis, L. Storme, and T. Sz˝ onyi. Lacunary polynomials, multiple blocking sets and Baer subplanes. J. London Math. Soc. (2) , 60(2):321–332, 1999. [2] A. Blokhuis, L. Storme, and T. Sz˝ onyi. Lacunary polynomials, multiple blocking sets and Baer subplanes. J. London Math. Soc. (2) , 60(2):321–332, 1999. Jan De Beule, Ghent University

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend