classification of higher dimensional operators in the
play

Classification of higher-dimensional operators in the Standard Model - PowerPoint PPT Presentation

Classification of higher-dimensional operators in the Standard Model Mateusz Iskrzy nski University of Warsaw IMPRS Workshop, Munich 19.07.2010 Higher-dimensional operators in the Standard Model 1 Introduction Effective theories Structure


  1. Classification of higher-dimensional operators in the Standard Model Mateusz Iskrzy´ nski University of Warsaw IMPRS Workshop, Munich 19.07.2010

  2. Higher-dimensional operators in the Standard Model 1 Introduction Effective theories Structure of the Standard Model 2 Reasoning scheme 3 Basis of invariant effective operators 4 Comparison with ”Effective lagrangian analysis of new interactions and flavour conservation” by Buchm¨ uller, Wyler (1986)

  3. Effective theories Standard Model → Extension

  4. Effective theories Standard Model → Extension But how does Extension correct Standard Model interactions in low-energy processes?

  5. Effective theories Standard Model → Extension But how does Extension correct Standard Model interactions in low-energy processes? Appelquist-Carazzone decoupling theorem: � � L = L (4) c (5) O (5) c (6) O (6) SM + 1 + 1 + O ( 1 Λ 3 ) Λ i i Λ 2 i i i i

  6. Effective theories Standard Model → Extension But how does Extension correct Standard Model interactions in low-energy processes? Appelquist-Carazzone decoupling theorem: � � L = L (4) c (5) O (5) c (6) O (6) SM + 1 + 1 + O ( 1 Λ 3 ) Λ i i Λ 2 i i i i What are the operators O (5) and O (6) ? i i

  7. Effective theories Standard Model → Extension But how does Extension correct Standard Model interactions in low-energy processes? Appelquist-Carazzone decoupling theorem: � � L = L (4) c (5) O (5) c (6) O (6) SM + 1 + 1 + O ( 1 Λ 3 ) Λ i i Λ 2 i i i i What are the operators O (5) and O (6) ? i i ◮ Gauge and Lorentz symmetry ◮ Dependencies through EOM

  8. Effective theories Standard Model → Extension But how does Extension correct Standard Model interactions in low-energy processes? Appelquist-Carazzone decoupling theorem: � � L = L (4) c (5) O (5) c (6) O (6) SM + 1 + 1 + O ( 1 Λ 3 ) Λ i i Λ 2 i i i i What are the operators O (5) and O (6) ? i i ◮ Gauge and Lorentz symmetry ◮ Dependencies through EOM Classification given in the paper ”Effective lagrangian analysis of new interactions and flavour conservation” by W. Buchm¨ uller, D. Wyler (1986), but...

  9. Effective theories Standard Model → Extension But how does Extension correct Standard Model interactions in low-energy processes? Appelquist-Carazzone decoupling theorem: � � L = L (4) c (5) O (5) c (6) O (6) SM + 1 + 1 + O ( 1 Λ 3 ) Λ i i Λ 2 i i i i What are the operators O (5) and O (6) ? i i ◮ Gauge and Lorentz symmetry ◮ Dependencies through EOM Classification given in the paper ”Effective lagrangian analysis of new interactions and flavour conservation” by W. Buchm¨ uller, D. Wyler (1986), but... 22 (of 81) operators are redundant and 1 is absent.

  10. SM - gauge group representations structure representation (dimension) hypercharge Field SU(3) SU(2) U(1) G µ 8 1 0 W µ 1 3 0 1 1 0 B µ 1 q 3 2 6 2 u 3 1 3 − 1 3 1 d 3 − 1 l 1 2 2 e 1 1 − 1 1 1 2 ϕ 2

  11. SM - lagrangian density µν G A µν − 1 µν W I µν − 1 L 0 = − 1 4 G A 4 W I 4 B µν B µν + ( D µ ϕ ) † ( D µ ϕ ) + m 2 ϕ † ϕ − 1 2 λ ( ϕ † ϕ ) 2 + i ¯ u � Du + i ¯ l � Dl + i ¯ e � De + i ¯ q � Dq + i ¯ d � Dd + − (¯ l Γ e e ϕ + ¯ q Γ u u ( ˜ ϕ ) + ¯ q Γ d d ϕ + h . c . )

  12. Mass-dimension of fundamental objects in units � = c = 1 Type vector V µ tensor X µν spinor Ψ skalar ϕ 3 ( GeV ) 1 ( GeV ) 2 ( GeV ) 1 Dimension ( GeV ) 2 Object D µ W µν , G µν , B µν q , l , u , d , e ϕ ◮ for SU(3) G A µν = ∂ µ G B ν − ∂ ν G C µ − g s f ABC G B µ G C ν ◮ for SU(2) W I µν = ∂ µ W I ν − ∂ ν W I µ − g ε IJK W J µ W K ν ◮ for U(1) B µν = ∂ µ B ν − ∂ ν B µ

  13. Reasoning scheme 1. Description in terms of matter fields ϕ , ψ , field strength tensors X µν and covariant derivatives D µ . Dimensional analysis. 2. Gauge and Lorentz symmetry. 3. Reduction of the set of operators using algebraic properties and SM EOM:

  14. Reasoning scheme 1. Description in terms of matter fields ϕ , ψ , field strength tensors X µν and covariant derivatives D µ . Dimensional analysis. e.g. dim-6 expressions containing both fermionic and bosonic fields: ψψ XD , ψψ X ϕ , ψψϕϕϕ , ψψϕϕ D , ψψϕ DD , ψψ DDD 2. Gauge and Lorentz symmetry. 3. Reduction of the set of operators using algebraic properties and SM EOM:

  15. Reasoning scheme 1. Description in terms of matter fields ϕ , ψ , field strength tensors X µν and covariant derivatives D µ . Dimensional analysis. 2. Gauge and Lorentz symmetry. 3. Reduction of the set of operators using algebraic properties and SM EOM:

  16. Reasoning scheme 1. Description in terms of matter fields ϕ , ψ , field strength tensors X µν and covariant derivatives D µ . Dimensional analysis. 2. Gauge and Lorentz symmetry. e.g. ψψϕ DD : many possible choices of ψ - the only singlet in ˆ 2 SU (2) ⊗ ˆ 2 SU (2) hypercharge conservation ( q † εϕ ∗ ) u , ( q † ϕ ) d , ( l † ϕ ) e , + h . c . 3. Reduction of the set of operators using algebraic properties and SM EOM:

  17. Reasoning scheme 1. Description in terms of matter fields ϕ , ψ , field strength tensors X µν and covariant derivatives D µ . Dimensional analysis. 2. Gauge and Lorentz symmetry. e.g. ψψϕ DD : many possible choices of ψ - the only singlet in ˆ 2 SU (2) ⊗ ˆ 2 SU (2) hypercharge conservation ( q † εϕ ∗ ) u , ( q † ϕ ) d , ( l † ϕ ) e , + h . c . Lorentz structure contains 2 singlets: ( 1 2 , 0) ⊗ ( 1 2 , 0) ⊗ ( 1 2 , 1 2 ) ⊗ ( 1 2 , 1 2 ) = (0 , 0) ⊕ (0 , 0) ⊕ (1 , 0) ⊕ (2 , 0) ⊕ (1 , 1) ⊕ (0 , 1) ⊕ (1 , 1) ⊕ (2 , 1) 3. Reduction of the set of operators using algebraic properties and SM EOM:

  18. Reasoning scheme 1. Description in terms of matter fields ϕ , ψ , field strength tensors X µν and covariant derivatives D µ . Dimensional analysis. 2. Gauge and Lorentz symmetry. e.g. ψψϕ DD : many possible choices of ψ - the only singlet in ˆ 2 SU (2) ⊗ ˆ 2 SU (2) hypercharge conservation ( q † εϕ ∗ ) u , ( q † ϕ ) d , ( l † ϕ ) e , + h . c . 2 independent Lorentz invariants (for each): ¯ ¯ ψ L ψ R ϕ D µ D µ ψ L σ µν ψ R ϕ D µ D ν 3. Reduction of the set of operators using algebraic properties and SM EOM:

  19. Reasoning scheme 1. Description in terms of matter fields ϕ , ψ , field strength tensors X µν and covariant derivatives D µ . Dimensional analysis. 2. Gauge and Lorentz symmetry. 3. Reduction of the set of operators using algebraic properties and SM EOM: We have (omitting full div) the following operators: ( ¯ ψ L σ µν ψ R )( D µ D ν ϕ ) (1) ( ¯ ψ L σ µν D µ D ν ψ R ) ϕ (2) ( ¯ ψ L σ µν D µ ψ R )( D ν ϕ ) (3) ( ¯ ψ L D µ D µ ψ R ) ϕ (4) ( ¯ ψ L D µ ψ R )( D µ ϕ ) (5) ( ¯ ψ L ψ R )( D µ D µ ϕ ) (6)

  20. Reasoning scheme 1. Description in terms of matter fields ϕ , ψ , field strength tensors X µν and covariant derivatives D µ . Dimensional analysis. 2. Gauge and Lorentz symmetry. 3. Reduction of the set of operators using algebraic properties and SM EOM: We can reduce: ( ¯ 2 ( ¯ ψ L σ µν ψ R )( D µ D ν ϕ ) = 1 ψ L σ µν ψ R )([ D µ , D ν ] ϕ ) ψ L σ µν ψ R )( ig W µν + ig ′ B µν ) ϕ ∼ ψψ X ϕ 2 ( ¯ = 1

  21. Reduction scheme

  22. Bosonic invariant operators ϕ 6 ϕ 4 DD XXX ϕϕ XX ε IJK W I ν W J ρ W K µ ( ϕ † ϕ ) 3 ϕ † T I ϕ W I µν B µν ( ϕ † ϕ )( D µ ϕ ) † ( D µ ϕ ) µ ν ρ ε IJK � µν ˜ W I µν W J νδ W K δ ϕ † T I ϕ W I B µν [ ϕ † ( D µ ϕ )][( D µ ϕ ) † ϕ ] µ f ABCc G A ν µ G B ρ ν G C µ ϕ † ϕ W I µν W I µν ρ f ABC ˜ G A ν µ G B δ ν G C µ µν ˜ ϕ † ϕ W I W I µν δ ϕ † ϕ G A µν G A µν µν ˜ ϕ † ϕ G A G A µν ϕ † ϕ B µν B µν ϕ † ϕ B µν ˜ B µν

  23. Invariant operators with 2 fermions ψψϕϕ D ψψϕϕϕ ψψ X ϕ ¯ q γ µ q )( ϕ † D µ ϕ ) ϕ † q )]( ϕ † ϕ ) d σ µν λ A ( ϕ † q ) G A (¯ [¯ u ( ˜ µν [¯ q γ µ T I q )( ϕ † T I D µ ϕ ) d ( ϕ † q )]( ϕ † ϕ ) u σ µν λ A ( ˜ ϕ † q ) G A (¯ ¯ µν ¯ u γ µ d )( ϕ † D µ ˜ e ( ϕ † l )]( ϕ † ϕ ) d σ µν T I ( ϕ † q ) W I (¯ ϕ ) [¯ µν u γ µ u )( ϕ † D µ ϕ ) u σ µν T I ( ˜ ϕ † q ) W I (¯ ¯ µν (¯ d γ µ d )( ϕ † D µ ϕ ) e σ µν T I ( ϕ † l ) W I ¯ µν e γ µ e )( ϕ † D µ ϕ ) u σ µν ( ˜ ϕ † q ) B µν (¯ ¯ (¯ ¯ l γ µ l )( ϕ † D µ ϕ ) d σ µν ( ϕ † q ) B µν ( ϕ † l ) γ µ (¯ e σ µν ( ϕ † l ) B µν lD µ ϕ ) ¯

  24. Fermionic operators ¯ LL ¯ RR ¯ ¯ LL RR (¯ l p 1 γ µ l p 2 )(¯ l p 3 γ µ l p 4 ) e γ µ e ) (¯ e γ µ e )(¯ q p 3 γ µ q p 4 ) u p 3 γ µ u p 4 ) (¯ q p 1 γ µ q p 2 )(¯ (¯ u p 1 γ µ u p 2 )(¯ (¯ d p 1 γ µ d p 2 )(¯ q p 1 γ µ T I q p 2 )(¯ q p 3 γ µ T I q p 4 ) d p 3 γ µ d p 4 ) (¯ q p 1 γ µ q p 2 )(¯ l p 3 γ µ l p 4 ) e γ µ e ) (¯ (¯ u γ µ u )(¯ q p 1 γ µ T I q p 2 )(¯ (¯ l p 3 γ µ T I l p 4 ) e γ µ e ) (¯ d γ µ d )(¯ u p 1 γ µ u p 2 )(¯ d p 3 γ µ d p 4 ) (¯ u p 1 γ µ T A u p 2 )(¯ d p 3 T A d p 4 ) (¯

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend