math 211 math 211
play

Math 211 Math 211 Lecture #20 November 7, 2000 2 Higher - PDF document

1 Math 211 Math 211 Lecture #20 November 7, 2000 2 Higher Dimensional Systems Higher Dimensional Systems x = A x A is an n n real matrix. If is an eigenvalue and v = 0 is an associated eigenvector, then x ( t ) = e t v


  1. 1 Math 211 Math 211 Lecture #20 November 7, 2000 2 Higher Dimensional Systems Higher Dimensional Systems x ′ = A x • A is an n × n real matrix. • If λ is an eigenvalue and v � = 0 is an associated eigenvector, then x ( t ) = e λt v is a solution. 3 Suppose that λ 1 , . . . , λ k are Proposition: distinct eigenvalues of A , and that v 1 , . . . , v k are associated nonzero eigenvectors. Then v 1 , . . . , v k are linearly independent. Return 1 John C. Polking

  2. 4 Suppose the n × n real matrix A Theorem: has n distinct eigenvalues λ 1 , . . . , λ n , and that v 1 , . . . , v n are associated nonzero eigenvectors. Then the exponential solutions x i ( t ) = e λ i t v i , 1 ≤ i ≤ n form a fundamental system of solutions for the system x ′ = A x . • Example 17 − 30 − 8   A = 16 − 29 − 8   − 12 24 7 Return 5 Complex Eigenvalues Complex Eigenvalues Suppose A is a real n × n matrix. • Suppose λ is a complex eigenvalue and w is an associated nonzero eigenvector. • Then λ is an eigenvalue and w is an associated nonzero eigenvector. • z ( t ) = e λt w and z ( t ) = e λt w are linearly independent complex valued solutions. • x ( t ) = Re( z ( t )) and y ( t ) = Im( z ( t )) are linearly independent real valued solutions. Return 6 Example Example 21 10 4   A = − 70 − 31 − 10   30 10 − 1 • The theorem applies if some of the eigenvalues are complex and we replace complex conjugate pairs of solutions by their real and imaginary parts. Theorem 2 John C. Polking

  3. 7 Repeated Eigenvalues – Example 1 Repeated Eigenvalues – Example 1 − 5 − 10 6   A = 8 19 − 12   12 30 − 19 • p ( λ ) = ( λ + 3)( λ + 1) 2 • Eigenspace for the eigenvalue λ 1 = − 3 has dimension 1 ⇒ one exponential solution  − 1 / 3  x 1 ( t ) = e − 3 t 2 / 3   1 Example 1a Example 2 Example 2a Analysis Return 8 Repeated Eigenvalues – Example 1 Repeated Eigenvalues – Example 1 • Eigenspace for the eigenvalue λ 2 = − 1 has dimension 2 ⇒ two linearly independent exponential solutions − 5 / 2 3 / 2     x 2 ( t ) = e − t x 3 ( t ) = e − t 1 & 0     0 1 Example 1 Example 2 Example 2a Analysis Return 9 Repeated Eigenvalues – Example 2 Repeated Eigenvalues – Example 2 1 2 − 1   A = − 4 − 7 4   − 4 − 4 1 • p ( λ ) = ( λ + 3)( λ + 1) 2 • Eigenspace for the eigenvalue λ 1 = − 3 has dimension 1 ⇒ one exponential solution  − 1 / 2  x 1 ( t ) = e − 3 t 3 / 2   1 Example 1 Example 1a Example 2a Analysis Return 3 John C. Polking

  4. 10 Repeated Eigenvalues – Example 2 Repeated Eigenvalues – Example 2 • Eigenspace for the eigenvalue λ 2 = − 1 has dimension 1 ⇒ only one exponential solution − 1 / 2   x 2 ( t ) = e − t 1   1 • Need a third solution. Example 1 Example 1a Example 2 Analysis Return 11 Multiplicities Multiplicities A an n × n matrix • Distinct eigenvalues λ 1 , . . . , λ k . • The characteristic polynomial is p ( λ ) = ( λ − λ 1 ) q 1 ( λ − λ 2 ) q 2 · . . . · ( λ − λ k ) q k . • The algebraic multiplicity of λ j is q j . • The geometric multiplicity of λ j is d j , the dimension of the eigenspace of λ j . Return 12 Multiplicities (cont.) Multiplicities (cont.) We always have: • q 1 + q 2 + · · · + q k = n . • 1 ≤ d j ≤ q j . • There are d j linearly independent exponential solutions corresponding to λ j . • If d j = q j for all j we have n linearly independent solutions. Multiplicities Return 4 John C. Polking

  5. 13 Examples Examples • In both p ( λ ) = ( λ + 1) 2 ( λ + 3) . • In both λ 2 = − 1 has algebraic multiplicity 2. • In Ex. 1 λ 2 = − 1 has geom. multiplicity 2. • In Ex. 2 λ 2 = − 1 has geom. multiplicity 1. • Problems arise when d j < q j . Return Example 1 Example 1a Example 2 Example 2a Multiplicities.a 14 New Approach New Approach • D = 1 x ′ = ax ⋄ Solution x ( t ) = Ce at . • D > 1 x ′ = A x ⋄ Tried x ( t ) = e λt v . ⋄ Why not x ( t ) = e tA v ? • But what is e tA ? 15 Exponential of a Matrix Exponential of a Matrix The exponential of the n × n Definition: matrix A is the n × n matrix e A = I + A + 1 2! A 2 + 1 3! A 3 + · · · ∞ 1 � n ! A n . = 0 5 John C. Polking

  6. 16 Examples Examples � r 1 0 � • A = 0 r 2 � e r 1 0 � e A = . e r 2 0 • e λI = e λ I. • e 0 I = I. Return 17 Properties 1 Properties 1 • A commutes with e A . • If A and B commute, then e A + B = e A · e B . • The inverse of e A is e − A . d dte tA = Ae tA . • Return 18 Properties 2 Properties 2 • The solution to the intial value problem x ′ = A x with x (0) = v is x ( t ) = e tA v . Return 6 John C. Polking

  7. 19 The Key Idea The Key Idea Let λ be a number (an eigenvalue), and A an n × n matrix. • A = λI +( A − λI ) ; λI & A − λI commute. e tA = e t [ λI +( A − λI )] = e tλI · e t ( A − λI ) = e λt · e t ( A − λI ) = e λt · [ I + t ( A − λI ) + t 2 2!( A − λI ) 2 + · · · ] Examples Prop 1 Return 20 Eigenvector Eigenvector Let λ be an eigenvalue and v an associated eigenvector. ⇒ ( A − λI ) v = 0 . e tA v = e λt · e t ( A − λI ) v = e λt [ I + t ( A − λI ) + t 2 2!( A − λI ) 2 + · · · ] v = e λt [ v + t ( A − λI ) v + t 2 2!( A − λI ) 2 v + · · · ] = e λt v Key Idea Return 21 Matrices with One Eigenvalue Matrices with One Eigenvalue A an n × n matrix with characteristic polynomial p ( λ ) = ( λ − λ 1 ) n . • Cayley-Hamilton Theorem: If p ( λ ) is the characteristic polynomial of the matrix A then p ( A ) = 0 I . • In our case ( A − λ 1 I ) n = 0 I. Key Idea Return 7 John C. Polking

  8. 22 Matrices with One Eigenvalue Matrices with One Eigenvalue (cont.) (cont.) e tA = e λ 1 t · [ I + t ( A − λ 1 I ) + t 2 2!( A − λ 1 I ) 2 + · · · t n − 1 ( n − 1)!( A − λ 1 I ) n − 1 ] + Key Idea Return 23 Example 1 Example 1 � − 3 1 � A = − 1 − 1 • p ( λ ) = ( λ + 2) 2 . � − 1 1 � ( A + 2 I ) 2 = 0 I A + 2 I = − 1 1 e tA = e − 2 t [ I + t ( A + 2 I )] � 1 − t t � = e − 2 t . − t 1 + t Key Idea Solution 1 E Return 24 Example 2 Example 2 0 − 9 27   A = − 2 3 − 18   − 1 3 − 12 ( A + 3 I ) 2 = 0 I. • p ( λ ) = ( λ + 3) 3 . e tA = e − 3 t [ I + t ( A + 3 I )] 1 + 3 t − 9 t 27 t   = e − 3 t  . − 2 t 1 + 6 t − 18 t  − t 3 t 1 − 9 t 1 E Key Idea Solution Return 8 John C. Polking

  9. 25 Example 3 (a) Example 3 (a) 1 2 − 1   A = − 4 − 7 4   − 4 − 4 1 • Earlier example. • p ( λ ) = ( λ + 3)( λ + 1) 2 • Distinct eigenvalues λ 1 = − 3 & λ 2 = − 1 • Different from previous two examples. Example Return 26 Example 3 (b) Example 3 (b) • Eigenspace for the eigenvalue λ 1 = − 3 has dimension 1 ⇒ one exponential solution x 1 ( t ) = e λ 1 t v 1 − 1 / 2   = e − 3 t 3 / 2   1 Return 27 Example 3 (c) Example 3 (c) • Eigenspace for the eigenvalue λ 2 = − 1 has dimension 1 ⇒ only one exponential solution x 2 ( t ) = e λ 2 t v 2 − 1 / 2   = e − t 1   1 • However, null(( A − λ 2 I ) 2 ) has dimension 2. Return 9 John C. Polking

  10. 28 Example 3 (d) Example 3 (d) • If v ∈ null(( A − λ 2 I ) 2 ) then e tA v = e λ 2 t [ I + t ( A − λ 2 I ) + t 2 2!( A − λ 2 I ) 2 + · · · ] v = e λ 2 t [ v + t ( A − λ 2 I ) v + t 2 2!( A − λ 2 I ) 2 v + · · · ] = e λ 2 t [ v + t ( A − λ 2 I ) v ] . Eigenvector Key Idea Return 29 Example 3 (e) Example 3 (e) • null( A + I ) 2 has basis 0 1     1 and v 3 = 0     1 0 • Third solution: x 3 ( t ) = e tA v 3 = e − t [ v 3 + t ( A + I ) v 3 ] Key Idea 3(d) 30 Example 3 (f) Example 3 (f) x 3 ( t ) = e − t [ v 3 + t ( A + I ) v 3 ] = e − t [ v 3 − 4 t v 2 ] 1 + 2 t    . = e − t − 4 t  − 4 t 3(b) 3(c) 10 John C. Polking

  11. 31 Summary Summary • In Examples 1 & 2 the matrix has one eigenvalue. ⋄ The series for e t ( A − λI ) truncated to a finite sum. • In Example 3 the matrix had two eigenvalues. ⋄ The series for e t ( A − λ 2 I ) does not truncate. ⋄ The series for e t ( A − λ 2 I ) v does truncate if ( A − λ 2 I ) 2 v = 0 . Key Idea 1 2 3(a) 3(d) Return 32 Generalized Eigenvectors Generalized Eigenvectors If λ is an eigenvalue of A and Definition: ( A − λI ) p v = 0 for some integer p ≥ 1 , then v is called a generalized eigenvector associated with λ. • The series for e t ( A − λI ) v truncates to a finite sum if v is a generalized eigenvector associated with λ. • We can compute e tA v . Key Idea Summary 33 Generalized Eigenvectors Generalized Eigenvectors Theorem: If λ is an eigenvalue of A with algebraic multiplicity q , then there is an integer p ≤ q such that null(( A − λI ) p ) has dimension q . • For each generalized eigenvector v we can compute e tA v . • We can find q linearly independent solutions this way. Key Idea 11 John C. Polking

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend