classical and quantum impurities in superconductors
play

Classical and Quantum impurities in superconductors 100 years old - PowerPoint PPT Presentation

Classical and Quantum impurities in superconductors 100 years old and still dirty I lya Vekhter Louisiana St at e Univers rsit y, USA MPIPKS, Dresden 6/3/2011 Superconductivity review I Simplest (well understood) correlated system: often


  1. Classical and Quantum impurities in superconductors 100 years old and still dirty I lya Vekhter Louisiana St at e Univers rsit y, USA MPIPKS, Dresden 6/3/2011

  2. Superconductivity review I Simplest (well understood) correlated system: often even when emerges from a strange normal state pairing of electrons pairing amplitude Nontrivial object: near the Fermi surfc + ( ) Ψ α β ∝ ψ ψ , ; , ( ) ( ) r r r r α β 1 2 1 2 Bose-condensation of Cooper pairs Superco conducti ctivity ty Ψ α β = χ ϕ − ( , ; ) ( ) α , β =↑ , ↓ r r r r Simplest case: αβ 1 2 1 2 Coop ooper p pai airs have w well-defined sp spin (si singlet o t or tr triplet t pairs) MPIPKS, Dresden 6/3/2011

  3. Why impurities? Kondo impurity: local singlet + electrons Ψ α β = χ ϕ − ( , ; ) ( ) Simplest superconductor: no spin-orbit r r r r αβ 1 2 1 2 singlet S=0   0 1   χ s = χ = σ y   ↑↓ − ↓↑ ( ) i , αβ − αβ αβ , s  1 0  triplet S=1 − +   d id d   χ = x y z χ = σ d ⋅ σ y [( )( )] ↑↓ + ↓↑ ↑↑ ↓↓   i , , + αβ αβ t , t d d id   z x y Competition of energy scales: impurities vs pairing MPIPKS, Dresden 6/3/2011

  4. Superconductors vs Kondo metals supercond Kondo No resistance minimum: superconductivity From D. MacDonald et al. 1962 H. Kamerlingh-Onnes 1911 J. Cooper and M. Miljak’ 1976 No susceptibility: Mn in Al Meissner effect NB: sometimes NMR MPIPKS, Dresden 6/3/2011

  5. Superconductivity review II = ∑ + + + ξ − ∆ ( ) H BCS c c k c c BCS Hamiltonian: α α αβ α − β k k k k k band pairing, “anomalous” singlet/triplet; ∑ ′ ∆ = ( ) ( , ) Order parameter: isotropic/anisotropic; k V k k c c ′ ′ αβ αβ γδ − δ γ , k k unitary or not… MPIPKS, Dresden 6/3/2011

  6. Superconductivity review II = ∑ + + + ξ − ∆ ( ) H BCS c c k c c BCS Hamiltonian: α α αβ α − β k k k k k band pairing, “anomalous” singlet/triplet; ∑ ′ ∆ = ( ) ( , ) Order parameter: isotropic/anisotropic; k V k k c c ′ ′ αβ αβ γδ − δ γ , k k unitary or not… ξ ∆     ( ) ( ) k c α +     = k k Matrix form: H BCS c c     singlet α − α + ∆ − ξ k k *  ( )    k c − α − k k MPIPKS, Dresden 6/3/2011

  7. Superconductivity review II = ∑ + + + ξ − ∆ ( ) H BCS c c k c c BCS Hamiltonian: α α αβ α − β k k k k k band pairing, “anomalous” singlet/triplet; ∑ ′ ∆ = ( ) ( , ) Order parameter: isotropic/anisotropic; k V k k c c ′ ′ αβ αβ γδ − δ γ , k k unitary or not… ξ ∆     ( ) ( ) k c α +     = k k Matrix form: H BCS c c     singlet α − α + ∆ − ξ k k *  ( )    k c − α − k k ∑ = γ + σ γ ( ) k H BCS E Bogoliubov transformation σ k k Excitation energies = ξ + ∆ 2 2 energy gap ( ) | ( ) | E k k k 2 electron u k γ k σ = u k c k σ − σ v k * c − k σ † Eigenstates 2 hole v k MPIPKS, Dresden 6/3/2011

  8. Isotropic vs anisotropic superconductors ∆ ∝ Ψ α β = χ ϕ − ( , ) ( , ; ) ( ) r r r r r r Connection to pair wave function αβ αβ 1 2 1 2 1 2 Ψ α β = − Ψ β α Ψ α β = χ ϕ − ( , ; ) ( ) ( , ; ) ( ; , ) r r r r Fermion exchange r r r r αβ 1 2 2 1 1 2 1 2 Spatial part: angular momentum l Spin part: 2x2 matrix singlet S=0 d xy = χ = σ = − χ 0 , 2 , 4 ... l y ( ) i αβ αβ βα , , s s s, d… wave triplet S=1 = 1 , 3 , 5 ... χ = σ ⋅ = χ l σ y [( )( )] i d αβ αβ βα t , t , p, f… wave non-s-wave (anisotropic) states favored by strong Coulomb repulsion MPIPKS, Dresden 6/3/2011

  9. Anisotropic superconductors density of states s- wave No excitations at low T ∆ Activated behavior e - ∆ /T Isotropic gap T Al, Be, Nb 3 Sn ∆ k = ∆ < 1978 ( ) 0 d- wave Density of qp ∝ T d 2 − 2 x y Specific heat C(T) ∝ T 2 -1 ∝ T 3 NMR T 1 ∆ Gap with κ /T universal zeroes (nodes) T ∆ k = ∆ φ ( ) cos 2 0 Power laws Cuprates, heavy fermions, >1979 MPIPKS, Dresden 6/3/2011

  10. Pure and impure superconductors Pure superconductor: What is the effect of: density of states 1) an isolated impurity (STM spectra) 2) ensemble of impurities Isotropic gap ( T c , planar junctions) Al, Be, Nb 3 Sn < 1978 How is this picture modified by impurities: Gap with 1) locally zeroes (nodes ) 2) globally Cuprates, heavy fermions, >1979 MPIPKS, Dresden 6/3/2011

  11. Classical and quantum impurities 1. Potential scatterers 2. Spin scattering = 2a. Classical spin [ , ] 0 S i S j ≠ [ , ] 0 2b. Quantum spin S i S j ∑ 3. Anderson impurity: interpolate + = + + + + ( ) . . H E n n Un n Vd c h c σ σ ↑ ↓ ↑ ↓ 0 imp k i i i i between the two regimes k 4. Single Impurity vs. many impurities 5. Conventional vs unconventional superconductors MPIPKS, Dresden 6/3/2011

  12. Single Impurities MPIPKS, Dresden 6/3/2011

  13. Single Impurity Problem We are solving a scattering problem (drop spin indices) + ∫ ∫ = ρ = Ψ Ψ ( ) ( ) ( ) ( ) ( ) H U r r d r d r U r r r σ σ imp ∑ ′ ∑ + − + ∫ = = ( ) i k k r ( ) d r U r c c e U c c ′ ′ ′ σ σ σ σ k k k k k k ′ ′ k k k k U k ′ k k ′ k For classical impurities ( U is a function) this can be solved exactly MPIPKS, Dresden 6/3/2011

  14. Reminder: Green’s functions Prescription: + r ′ ′ ω τ τ = − ψ τ ψ τ ω = π + ( , ; ) ( , ; , ) ( , ) ( , ) G r r 2 ( 1 / 2 ) G r r T r T n αβ αβ τ α β 1 2 1 2 1 2 n n Matsubara ω → ω + δ ω R i i ( , ; ) • obtain retarded Green’s function G r r n 1 2 ω = − π − ω 1 R ( , ) Im ( , ; ) • poles=excitation energies N r G r r ∫ − = − π ω 1 R Im ( ; ) d k G k • density of states=Im part [ ] [ ] Example: normal metal − − ω = ω − ξ → ω − ξ + δ 1 1 ( , ) G k i i n n k k = ∫ d ω δ ω − ξ ( ) ( ) N k k MPIPKS, Dresden 6/3/2011

  15. Nambu formalism and matrices I • Mix particles/holes, spin up/down Nambu-Gor’kov 4x4 matrix • BCS hamiltonian σ , i τ • Matrices in spin and particle-hole space respectively i • Matrix structure of the impurity scattering: ˆ ⇒ τ Potential: e.g attracts electrons/repels holes ( ) ( ) U r U r 3 [ ] 2 ( ) ( ) = + τ + − τ σ σ α σ σ Magnetic: ⋅ ⇒ ⋅ σ α 1 1 / S S 3 3 3 3 • Pure BCS MPIPKS, Dresden 6/3/2011

  16. Nambu formalism and matrices II − 1 ω − ξ ∆ “anomalous” Green’s   Green’s function of i ˆ   ω = n k k ( ; ) function, ODLRO G k   a superconductor ∆ ω + ξ 0 *   i k n k “normal” particle & hole propagators MPIPKS, Dresden 6/3/2011

  17. Nambu formalism and matrices II − 1 ω − ξ ∆ “anomalous” Green’s   Green’s function of i ˆ   ω = n k k ( ; ) function, ODLRO G k   a superconductor ∆ ω + ξ 0 *   i k n k “normal” particle & hole propagators − ω = − π ω 1 Density of states R “normal” part ( , ) [Im ] ( , ; ) r r r N G 11 poles: energies → energy gap Self-consistency “anomalous” part ∑∫ ′ ′ ′ ∆ = ω ) ( , ) ( , T d k V k k G 12 k condition on the k n highest T with sol’n → ω order parameter n transition temperature Not important for single impurity Crucial for multiple impurities MPIPKS, Dresden 6/3/2011

  18. Single impurity ∑ + = + • Key: multiple scattering . c . H imp U c c h ′ ′ σ σ k k k k ′ k k change of momentum/spin at each scattering event can include all the scattering events … in principle MPIPKS, Dresden 6/3/2011

  19. T-matrix solution U = + + … k ′ k MPIPKS, Dresden 6/3/2011

  20. T-matrix solution U = + + … k ′ k structure is especially simple for isotropic scatterers, T-matrix = U U ′ k , k depends on ω only. = ω ( ) T T ′ , k k − 1  −  ∑ ˆ ˆ ω = ˆ + ˆ ω ˆ ω ∑ ω = ˆ ω ˆ ˆ ( , ) ( ) ( ) T U U G k T ( ) 1 ( , ) T U G k U   0 0   k k T-ma matrix in includ ludes a all ll the effects o of mult multiple scattering on sc on a si single i e impu purity MPIPKS, Dresden 6/3/2011

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend