chiral dynamics and nuclear matter
play

CHIRAL DYNAMICS and NUCLEAR MATTER Wolfram Weise ECT * Trento and T - PowerPoint PPT Presentation

EMMI Workshop Cold Dense Nuclear Matter: from Short-Range Nuclear Correlations to Neutron Stars GSI 15


  1. EMMI Workshop “Cold Dense Nuclear Matter: from Short-Range Nuclear Correlations to Neutron Stars” GSI 15 October 2015 CHIRAL DYNAMICS and NUCLEAR MATTER Wolfram Weise ECT * Trento and T echnische U niversität M ünchen Chiral EFT approaches to nuclear many-body systems Beyond mean field: fluctuations and Functional Renormalisation Group Nuclear matter, neutron matter and neutron stars Pion mass in the nuclear medium Thermodynamics of the chiral order parameter Outlook: Chiral SU(3) dynamics and hypernuclear matter 1

  2. PHASES and STRUCTURES of QCD - facts and visions -                      J. Wambach,     ? K. Heckmann,    M. Buballa           arXiv:1111.5475v2 [hep-ph]       ?   ?                                                                     2

  3. CHIRAL SYMMETRY RESTORATION from Nambu - Goldstone to Wigner - Weyl Realisation of Chiral Symmetry PHASE TRANSITION or smooth CROSSOVER ? .       MeV �          P  ?   ? fm 3          CHIRAL PHASE TRANSITION         nuclear  physics       terrain    T [ MeV ]         Chiral first - order phase transition and critical point ? . . . based on chiral quark models which do not respect nuclear physics constraints Needed: systematic approach to nuclear thermodynamics 3

  4. PIONS , NUCLEONS and NUCLEI in the context of LOW - ENERGY QCD CONFINEMENT of quarks and gluons in hadrons Spontaneously broken CHIRAL SYMMETRY LOW-ENERGY QCD with light (u,d) quarks: Effective Field Theory of (weakly) interacting Nambu - Goldstone Bosons (pions) Chiral EFT represents QCD at energy/momentum scales Q << 4 π f π ∼ 1 GeV Strategies at the interface between QCD and nuclear physics : In-medium Ch iral P erturbation T heory Chiral Nucleon - Meson model based on non - linear sigma model based on linear sigma model (with inclusion of nucleons) non - perturbative expansion of free energy density Renormalization Group approach in powers of Fermi momentum 4

  5. Spontaneously Broken CHIRAL SYMMETRY mesons baryons a 1 ∆ Axial Triplet + 1 + 3 Dipole 2 of f 0 0 + 1 . 0 + ¯ 1 ρ K ∗ NAMBU - [ GeV ] N 2 1 − Dipole GOLDSTONE ρ , ω ω BOSONS : GAP Gap mass π + , π 0 , π − 0 . 5 4 π f π ¯ Goldstone K Boson PION Characteristic Goldstone Goldstone 0 − Boson 0 π Symmetry condensates VACUUM Breaking SCALE : PION DECAY CONSTANT 4 π f π ∼ 1 GeV Axial current µ π f π = 92 . 2 ± 0 . 2 MeV ν 5

  6. UV SCALES and SCHEMES Λ χ = 4 π f π 1 GeV . UV (energy / momentum) Renormalization Group . LINEAR SIGMA MODEL 0 . 5 λ ⌧ Λ χ , m σ IR π , σ N 0 Q NON-LINEAR V low − k SIGMA MODEL DOMAIN Chiral EFT Nuclear Physics π N m π Achim Schwenk’s talk 0 IR 6

  7. and “old” Transverse distributions of quarks in the proton core - plus - cloud structure ? � D � D = � D � � � � � � Deeply Virtual Compton Scattering (expectations for DVCS @ JLab - 12 GeV) M. Guidal, H. Moutarde, M. Vanderhaeghen Rep. Prog. Phys. 76 (2013) 066202 , 3 ρ ( b ) 4 [ fm − 2 ] ρ ( b ) x = 0 . 4 2 → PROTON [ fm − 2 ] Q 2 = 2 . 5 GeV 2 compact core: 3 x B = 0 . 44 valence quarks 1 x B = 0 . 1 x = 0 . 1 b < 0.5 fm 2 0 0.5 1.0 b [ fm ] 1 valence + sea quarks b [ fm ] (core + (pion) cloud) 0 0.5 1.0 2.0 7

  8. NN Interaction Hierarchy of SCALES Chiral Effective III II I V Field Theory NN potential r [ m − 1 π ] 1 2 3 r [ µ − 1 ] & two-pion exchange Lattice QCD π π π one-pion exchange two-pion π exchange N N N N one-pion π exchange S. Aoki, T. Hatsuda, N. Ishii short Prog. Theor. Phys. 123 (2010) 89 distance π N N N N contact terms explicit treatment of two-pion exchange NN Central Potential from Lattice QCD 8

  9. CHIRAL EFFECTIVE FIELD THEORY Realization of Low-Energy QCD based on Non-Linear Sigma Model plus (heavy) baryons Interacting systems of PIONS (light / fast) and NUCLEONS (heavy / slow): L eff = L π ( U, ∂ U ) + L N ( Ψ N , U, ... ) U ( x ) = exp [ i τ a π a ( x ) /f π ] Construction of Effective Lagrangian: Symmetries short distance + . . . + + dynamics: contact terms N N π π π π 9

  10. NUCLEAR INTERACTIONS from CHIRAL EFFECTIVE FIELD THEORY Weinberg Bedaque & van Kolck Bernard, Epelbaum, Kaiser, Meißner; . . . � Q 0 � O Λ 0 � Q 2 � O Λ 2 � Q 3 � O Λ 3 � Q 4 � O Λ 4 Systematically organized HIERARCHY 10

  11. Explicit DEGREES of FREEDOM ∆ ( 1230 ) Large spin - isospin polarizability of the Nucleon ∆ ( 1230 ) in pion-nucleon scattering Dominance of π + p σ tot [ mb ] ∆ g 2 π ( M ∆ − M N ) ∼ 5 fm 3 A β ∆ = f 2 M ∆ − M N ≃ 2 m π << 4 π f π ( small scale ) N p lab [ GeV / c ] Pionic Van der Waals - type intermediate range central potential N. Kaiser, S. Gerstendörfer, W. W. , NPA637 (1998) 395 N. Kaiser, S. Fritsch, W. W. , NPA750 (2005) 259 π V c ( r ) = − 9 g 2 e − 2m π r π A P ( m π r ) β ∆ ∆ 32 π 2 f 2 π r 6 π π N N N N N strong 3 - body J. Fujita, H. Miyazawa (1957) interaction Pieper, Pandharipande, Wiringa, Carlson (2001) 11

  12. Explicit DEGREES of FREEDOM (contd.) ∆ ( 1230 ) Kaiser et al. , Ordonez et al. Krebs, Epelbaum, Meißner (2007) Important physics of ∆ ( 1230 ) promoted to NLO Improved convergence 12

  13. Important : Explicit treatment of two - pion exchange dynamics N , ∆ π 3 - body + + + + forces π N N N N contact terms contact terms Short digression: “Discovery” of two-pion exchange at LHC: elastic pp scattering at √ s = 8 TeV d σ deviation from standard exponential behaviour dt ∝ e bt π 0 . 06 ref = 527 . 1 e − 19 . 39 | t | P P data, statistical uncertainties N b = 1 0 . 05 full systematic uncertainty band N b = 2 V. A. Khoze, A.D. Martin, π 0 . 04 syst. unc. band without normalisation N b = 3 M.G. Ryskin 0 . 03 J. Phys. G 42 (2015) 025003 0 . 02 0 . 01 0 , d σ / d t − ref − 0 . 01 P L. Jenkovszky, A. Lengyel G. Antchev et al. (TOTEM coll.) ref − 0 . 02 Acta Phys. Pol. Nucl. Phys. B 899 (2015) 527 − 0 . 03 B 46 (2015) 863 − 0 . 04 − 0 . 05 0 . 02 0 . 04 0 . 06 0 . 08 0 . 1 0 . 12 0 . 14 0 . 16 0 . 18 0 . 2 0 [GeV 2 ] | t | 13

  14. Important pieces of the CHIRAL NUCLEON - NUCLEON INTERACTION 200 N π ISOVECTOR ∆ ( 1232 ) 100 TENSOR FORCE [ MeV ] π N N 0 π +2 π V T [MeV] s 1 -100 s 2 V T π nge π -200 N N note: no meson -300 ρ Isovector Tensor Potential r [ fm ] -400 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 0.6 1.5 r [fm] N. Kaiser, S. Gerstendörfer, W.W. : Nucl. Phys. A 637 (1998) 395 CENTRAL ATTRACTION from TWO - PION EXCHANGE N Van der WAALS - like force: π ∆ ( 1232 ) V c ( r ) ∝ − exp[ − 2m π r ] P ( m π r ) π r 6 N N ... at intermediate and long distance note: no boson σ 14

  15. IN - MEDIUM CHIRAL PERTURBATION THEORY Small energy, momentum, m π , k F << 4 π f π ∼ 1 GeV scales : “Medium insertion” in the nucleon propagator: � � i ( γ µ p µ + M N ) N + i ε − 2 π δ ( p 2 − M 2 N ) θ ( p 0 ) θ ( k F − | ⃗ | ~ p | ) p ) p 2 − M 2 Loop expansion of ( I n- M edium) Ch iral P erturbation T heory Expansion of ENERGY DENSITY in E ( k F ) powers of Fermi momentum [modulo functions f n ( k F / m π ) ] Nuclear thermodynamics : compute free energy density (3-loop order) N. Kaiser, S. Fritsch, W. W. (2002-2004) in - medium nucleon propagators incl. Pauli blocking 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend