characterization of the prototype cmos pixel sensor
play

Characterization of the prototype CMOS pixel sensor JadePix-1 for - PowerPoint PPT Presentation

Characterization of the prototype CMOS pixel sensor JadePix-1 for the CEPC vertex detector Liejian Chen 1,2 , Jia Tao 1,2 , Hongbo Zhu 1,2 , Ying Zhang 1,2 , Xiaocong Ai 1,3 , Yi Liu 3 , Chenfei Yang 4 , Ryuta Kiuchi 1,2 , Xin Shi 1,2 , Ke Wang 1,2


  1. Characterization of the prototype CMOS pixel sensor JadePix-1 for the CEPC vertex detector Liejian Chen 1,2 , Jia Tao 1,2 , Hongbo Zhu 1,2 , Ying Zhang 1,2 , Xiaocong Ai 1,3 , Yi Liu 3 , Chenfei Yang 4 , Ryuta Kiuchi 1,2 , Xin Shi 1,2 , Ke Wang 1,2 , Na Wang 1,2 , Zhenan Liu 1,2 , Qun Ouyang 1,2 , Xinchou Lou 1,2 1 Institute of High Energy Physics, CAS 2 State Key Laboratory of Particle Detection and Electronics 3 Deutsches Elektronen-Synchrotron DESY 4 University of Science and Technology of China 9 th International Workshop on Semiconductor Pixel Detectors for Particles and Imaging, PIXEL2018, December 10-14, 2018, Taipei

  2. Outline Introduction ▪ Pixel design ▪ Prototype performance ▪ Summary and outlook ▪ 13 Dec, 2018, PIXEL2018 2

  3. Introduction - CEPC & SppC ▪ Phase 1: Circular Electron Positron Collider (CEPC) • Higgs(Z) factory : E cm ≈ 240 GeV, luminosity ~2x10 34 cm -2 s -1 , 2 Interaction Points(Detectors), 1M clean Higgs over 10 years + operation at Z-pole (91 GeV) and WW (160 GeV) • Higgs boson + EW precision measurements ▪ Phase 2: Super proton proton Collider (SppC) • Discovery machine for new physics : upgrade to pp collision with E cm ≈ 50-100 TeV (+ ep, HI options), luminosity ~1x10 35 cm -2 s -1 13 Dec, 2018, PIXEL2018 3

  4. CEPC Vertex Detector ▪ Vertex detector of CEPC, essential for identification of heavy-flavor quarks and 𝜐 leptons, designed to achieve excellent impact parameter resolution : 10 μm 𝜏 𝑠𝜚 = 5 μm ⊕ 3 2 𝜄 𝑞(GeV) ∙ sin Τ ▪ Baseline design: three double layers pixelated vertex detector Physics driven requirements Sensor specifications Single−point resolution < 3 μ m Small pixel 16 μ m? Material budget 0.15% X 0 per layer Thinning 50 μ m Low power 50 mW/cm 2 R of Inner most layer 16 mm Fast readout Radiation tolerance (Higgs mode) TID 0.93 Mrad/y NIEL 2.1x10 12 1 MeV n eq /cm 2 /y 13 Dec, 2018, PIXEL2018 4

  5. Prototype Design – JadePix-1 ▪ TJ 0.18 μ m CMOS image process with high resistance epi-layer ▪ Goal: sensor diode geometry optimization ▪ Design remarks: • diode area, footprint • pixel pitch 16 x 16 μm 2 33 x 33 μm 2 ▪ Submission in Nov 2015, test system developed and validated in 2017, detailed performance characterization this year 13 Dec, 2018, PIXEL2018 5

  6. DAQ System ▪ Analog signal from sensor amplified on the daughter board ▪ Converted to digital signal on the mother board ▪ Data transmitted to PC via PCIe after processed on evaluation board ▪ Data took automatically with modern multi-thread C++ software JadePix-1 : Mother Board: KC705 FPGA Board: Daughter Board: TJ 180 nm CPS 16 channels amplifier 16 bit ADC 6 Gbps PCIe 13 Dec, 2018, PIXEL2018 6

  7. Performance of DAQ system Mother board FPGA board Output waveform comparison(after amplified) Daughter board (VIVADO ILA and Oscilloscope) ▪ The reference voltage of ADC Vref = 4.096 V: 1 LSB = Vref/2 N-1 =0.125 mV ▪ Output signal from sensor responding to 1 LSB responds: 0.125mV/8 = 15.6uV ▪ Without chip test to estimate DAQ system noise: ~170 μ V~3.5e- DAQ system noise distribution without chip 13 Dec, 2018, PIXEL2018 7

  8. Tests with 55 Fe ▪ Correlated Double Sampling (CDS) to suppress noise and extract signals ▪ Noise measured with/without radioactive source (exclude suspected signals and get multiple frames average) 13 Dec, 2018, PIXEL2018 8

  9. 55 Fe Calibration ▪ 55 Fe used to calibrate the pixel gain on the assumptions: 22000 Events the charges with X-ray Collection Peak =1131 20000 18000 hitting on diode is 16000 complete conversion 14000 12000 10000 8000 6000 k =3429 a 4000 k =3764 b 2000 0 1000 2000 3000 4000 5000 the charges with X-ray hitting Seed Pixel Charge [ADC] other place disperse slowly ▪ 55 Fe generate two low energy X-ray: towards diode on thermal • 5.9 keV (90%) diffuse to neighbor pixel • 6.49 keV (10%) ▪ 5.9 keV X-ray produced electron- hole pairs: 𝑂 𝑓−ℎ = 𝐹 𝛽 𝜜 = 1640 13 Dec, 2018, PIXEL2018 9

  10. Simulation Interpolate on regular mesh Build Sentaurus TCAD model Extract electric field ▪ 3D TCAD simulations are used to calculate the Electric Field Map ▪ Barycentric interpolation using nearest neighbors is used to calculate results on regular mesh in AllPix 2 ▪ Monte Carlo sampling algorithm used for radioactive source 13 Dec, 2018, PIXEL2018 10

  11. Simulation vs Measurement ▪ TCAD + AllPix2 combined simulation managed to re-produce most of the features observed in measurements Simulation ( TCAD+AllPix 2 ) Measurement 22000 Events Events 4000 Collection Peak =1131 20000 Collection Peak = 1230 18000 3500 16000 3000 14000 2500 12000 2000 10000 8000 1500 k =3352 a 6000 k =3429 1000 a 4000 k =3676 k =3764 500 b b 2000 0 0 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 Seed Pixel Charge [ADC] Signal [ADC] 13 Dec, 2018, PIXEL2018 11

  12. Diode Surface ▪ Lager diode surface -> more effective charge collection ▪ Lager capacitance -> more sensor noise 16 16 16 ROW 45 ROW ROW 14 14 14 40 30 30 12 12 12 35 25 25 10 10 10 30 A3 ENC A2 ENC 8 20 A1 ENC 8 8 20 25 6 6 6 20 10.4 e - 15 8.2 e - 15 7.8 e - 4 4 4 15 10 10 2 2 2 10 0 0 0 0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45 COLUMN COLUMN COLUMN 22000 Events Events Events Entries = 2006421 Entries = 2382832 Entries = 2303028 ± ± ± 20000 25000 k = 3429 54 k = 3038 39 k = 2198 32 a a a A1 A2 A3 30000 ± ± ± k = 2412 36 k = 3764 50 k = 3330 46 18000 b b b collection peak = 796 collection peak = 1035 collection peak = 1131 20000 16000 25000 14000 CCE = 33.0% CCE = 34.1% CC𝐹 = 36.2% 20000 12000 15000 10000 15000 CVF = 31.9 μV/e CVF = 28.3 μV/e C𝑊𝐺 = 20.5 𝜈V/𝑓 8000 10000 10000 6000 4000 5000 5000 2000 0 0 0 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 Seed Pixel Charge [ADC] Seed Pixel Charge [ADC] Seed Pixel Charge [ADC] 13 Dec, 2018, PIXEL2018 12

  13. Footprint ▪ Spacing: separation between diode and readout electronics 16 16 16 ROW 45 ROW 40 ROW 40 14 14 14 40 35 35 12 12 12 35 30 30 10 10 10 30 A7 ENC A4 ENC 25 8 25 A1 ENC 8 8 25 6 20 6 6 20 20 7.5 e - 7.4 e - 7.8 e - 4 4 4 15 15 15 2 2 2 10 10 10 0 0 0 0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45 COLUMN COLUMN COLUMN 22000 Events Events Entries = 1723746 Entries = 2006421 20000 ± ± k = 3514 51 20000 k = 3429 54 a A1 a A4 ± A7 k = 3864 52 ± 18000 b k = 3764 50 18000 b collection peak = 1054 16000 collection peak = 1131 16000 14000 14000 CCE = 33.0% CCE = 30.0% CCE = 28.6% 12000 12000 10000 10000 CVF = 31.9 μV/e CVF = 32.7 μV/e CVF = 31.6 μV/e 8000 8000 6000 6000 4000 4000 2000 2000 0 0 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 Seed Pixel Charge [ADC] Seed Pixel Charge [ADC] 13 Dec, 2018, PIXEL2018 13

  14. Cluster Charge Collection ▪ Cluster CCE=Cluster collection peak/Seed pixel calibration peak • Almost complete charge collection with 5x5 clusters • 3X3 cluster can collect most charges 120 120 CCE [%] CCE [%] 100 100 80 80 Higher CCE with Higher CCE with 60 60 larger diode larger footprint 40 40 A1 A1 20 20 A4 A2 A3 A7 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Number of pixels in a cluster Number of pixels in a cluster 13 Dec, 2018, PIXEL2018 14

  15. Tests with 90 Sr ▪ Scintillator+ SiPM to provide the trigger signal ▪ Charged collected by the seed pixel estimated as the most probable value derived from the Landau function fit to the charge distribution e - Scintillator CMOS sensor 90 Sr (collimated) 13 Dec, 2018, PIXEL2018 15

  16. Charge Collection A1 A2 A3 Sector Seed Charge [e - ] Cluster Charge [e - ] CCE S/N A1 1498 3893 38.48% 237 A2 1624 3973 40.87% 229 A3 1673 3784 44.22% 180 A4 1391 3822 36.39% 234 A7 1361 3985 34.15% 220 13 Dec, 2018, PIXEL2018 16

  17. Performance After Irradiation ▪ Samples sent to a pulsed neutron reactors and irradiated to fluences of 10 12 , 5x10 12 , and 10 13 1 MeV n eq /cm 2 ▪ Larger diode (A3 >A1) more radiation hard as expected A1 A3 13 Dec, 2018, PIXEL2018 17

  18. Performance After Irradiation ▪ Charge collection efficiency decreases but noise increases as the neutron fluence goes higher 13 Dec, 2018, PIXEL2018 18

  19. Tests with Electron Beams ▪ Sensor characterized with the DESY electron beam in September Beam energy 1-6 GeV, beam size 1x1 cm 2 , data taken at 4.4GeV • EUDET beam telescope , spatial resolution 2~3μm at DUT • JadePix-1 Mimosa26 13 Dec, 2018, PIXEL2018 19

  20. Track Reconstruction ▪ Raw data converted to LCIO format using a customized EUDAQ version ▪ Sparse clustering to group pixels if they are within the defined distance ▪ General Broken Lines (GBL) algorithm to align reference planes and DUT JadePix-1 region MIMOSA26 region 13 Dec, 2018, PIXEL2018 20

  21. Spatial Resolutions ▪ Spatial resolutions better than 5 μ m and 3.5 μ m achieved for pixel sizes of 33x33 μ m 2 and 16x16 μ m 2 13 Dec, 2018, PIXEL2018 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend