capability for probing the intergalactic magnetic field
play

Capability for Probing the Intergalactic Magnetic Field (IGMF) - PowerPoint PPT Presentation

SKA Science W orkshop in East Asia 2013 @ Nagoya Univ. 5 - 7 June 2013 Capability for Probing the Intergalactic Magnetic Field (IGMF) Shinsuke Ideguchi Kumamoto University, Japan Collaborators: K. Takahashi (Kumamoto Univ.), T. Akahori


  1. SKA Science W orkshop in East Asia 2013 @ Nagoya Univ. 5 - 7 June 2013 Capability for Probing the Intergalactic Magnetic Field (IGMF) Shinsuke Ideguchi Kumamoto University, Japan Collaborators: K. Takahashi (Kumamoto Univ.), T. Akahori (Sydney Univ.), K. Kumazaki (Nagoya Univ.) & D. Ryu (Chungnam National Univ.)

  2. Our Goal Find IGMF in filaments of galaxies by radio telescopes have never been observed a ff ect to many cosmic phenomena - CMB fluctuation, propagation of UHECR, etc... may have information of early universe - based on ideas : the current comic magnetisms originate from primordial MF ~100 nG, a few rad/m 2 in RM ( Akahori & Ryu 2010 ) Akahori & Ryu ( 2010 ) In this study: W e forecast the capability for proving the IGMF in filaments assuming “LOFAR, ASKAP & GMRT” observation

  3. Polarization angle [ deg. ] 350 Observation 300 slope : RM 250 Faraday Rotation 200 χ = ( RM ) λ 2 + χ 0 150 100 � � B � � � dl � l s � n e 50 � RM � 0 . 81 rad 0 cm � 3 m 2 µ G Mpc 0 -50 0 0.2 0.4 0.6 0.8 1 Integration along a LOS avelength λ 2 [ m 2 ] W Situation needed for observing IGMF source IGMF Foreground Need to distinguish the Galaxy component, IGMF & source

  4. [mJy] Faraday Dispersion Function ( FDF ) Distribution of MF & radio source along a LOS � ∞ F ( φ ) e 2 i φλ 2 d φ P ( λ 2 ) = Q + iU = −∞ Observed polarized intensity Intrinsic polarized intensity Relation between d “observed PI” n u o r g e r o F source & 0.1 F( � ) “FDF” IGMF 0.08 0.06 0.04 Faraday depth gap 0.02 ( ~distance measured by MF ) � here 0 n e B · d r rad m − 2 φ ( r ) = 0 . 81 0 5 10 15 20 25 30 -2 ] � [rad m there

  5. RM IGMF Diffuse source Compact source P ( λ 2 ; p 1 , p 2 , . . . , p N ) = Q ( λ 2 ; p 1 , p 2 , . . . , p N ) + iU ( λ 2 ; p 1 , p 2 , . . . , p N ) QU - fitting � ∞ F ( φ ; p 1 , p 2 , . . . , p N ) e 2 i φλ 2 d φ = −∞ observed Q & U data parameters per each source 0.15 φ : faraday depth of source 0.1 0.05 δφ : width of source 0 Q f : peak intensity of source -0.05 -0.1 θ : intrinsic polarization angle -0.15 0.2 0.15 0.1 0.05 U QU - fitting 0 -0.05 -0.1 Model FDF -0.15 0.001 0.01 0.1 1 10 � 2 0.1 F( � ) model Q & U [mJy] 0.15 0.08 0.1 0.05 0 0.06 Q -0.05 -0.1 -0.15 0.04 parameter set 1 0.2 parameter set 2 0.15 … 0.02 0.1 0.05 U 0 -0.05 0 -0.1 0 5 10 15 20 25 30 -0.15 -2 ] � [rad m 0.001 0.01 0.1 1 10 � 2

  6. RM IGMF Diffuse source Compact source P ( λ 2 ; p 1 , p 2 , . . . , p N ) = Q ( λ 2 ; p 1 , p 2 , . . . , p N ) + iU ( λ 2 ; p 1 , p 2 , . . . , p N ) QU - fitting � ∞ F ( φ ; p 1 , p 2 , . . . , p N ) e 2 i φλ 2 d φ = −∞ observed Q & U data parameters per each source 0.15 φ : faraday depth of source 0.1 0.05 δφ : width of source 0 Q f : peak intensity of source -0.05 -0.1 θ : intrinsic polarization angle -0.15 This Study: 0.2 0.15 0.1 Forecast the capability of ongoing telescope 0.05 U QU - fitting 0 -0.05 -0.1 Model FDF -0.15 for proving the IGMF by QU - fitting 0.001 0.01 0.1 1 10 � 2 0.1 F( � ) model Q & U through Fisher analysis [mJy] 0.15 0.08 0.1 0.05 0 0.06 Q -0.05 -0.1 -0.15 0.04 parameter set 1 0.2 parameter set 2 0.15 … 0.02 0.1 0.05 U 0 -0.05 0 -0.1 0 5 10 15 20 25 30 -0.15 -2 ] � [rad m 0.001 0.01 0.1 1 10 � 2

  7. 1σ 2σ Fiducial value 0 Fisher Analysis Observed data Fisher Matrix Model ∂ 2 χ 2 F jk = 1 N [ Y l ( p ) − Z l ] 2 ∂ p j ∂ p k χ 2 = 2 � σ 2 ~ C (Curvature) l l =1 Curvature at the fiducial value in parameter space Covariance Matrix χ 2 σ jk = ( F − 1 ) 1 / 2 jk R ~ (1/C) 1/2 = R (Curvature Radius) diagonal : 1 - σ error of parameter p non - diagonal : correlation of error

  8. Assumption • An observation of a compact source through the Galaxy • RM of IGMF in filaments is a few rad/m 2 Quasar • One hour exposure Foreground IGMF ASKAP GMRT LOFAR 2 P( � 2 ) 0.1 F( � ) 1.5 0.08 1 0.06 0.04 0.5 0.02 0 0 0.001 0.01 0.1 1 10 0 5 10 15 20 25 30 2 ] � 2 [m -2 ] � [rad m

  9. δφ c f c (0.1) δφ c (0.4) 1-σ confidence region (0.4) RM IGMF (3.0) RM IGMF =3.0 rad/m 2 Results Ⅰ f=0.1 mJy 40 1.2 35 long wavelength 1 (LOFAR) 30 0.8 25 RM= 0 is not short wavelength 20 excluded 0.6 (ASKAP) 15 0.4 10 0.2 5 0 0 0 10 20 30 40 50 0 2 4 6 8 10 L A AL AGL (A : ASKAP, G : GMRT, L : LOFAR)

  10. 1-σ confidence region δφ c (0.4) RM IGMF (5.0) RM IGMF (3.0) δφ c (0.4) RM IGMF =3.0 rad/m 2 Results Ⅱ f=0.1 mJy RM IGMF =5.0 rad/m 2 RM IGMF =3.0 rad/m 2 f=0.1 mJy f=0.5 mJy RM= 0 is excluded RM= 0 is excluded 9 40 8 35 7 30 6 25 5 20 4 15 3 10 2 5 1 0 0 1.5 2 2.5 3 3.5 4 4.5 2 3 4 5 6 7 8 9 10 Larger RM IGMF / Brighter source make it easier to detect the IGMF

  11. Results Ⅲ Necessary source intensities for detecting IGMF ( 3 - σ CL ) IGMF is detected in the up - right regions of the lines RM=3.0 rad/m 2 RM=1.0 rad/m 2 The Galaxy intensity [mJy] The Galaxy intensity [mJy] 100 100 10 10 1 1 0.1 0.1 A AL 0.01 0.01 AGL 0.001 0.001 0.001 0.01 0.1 1 10 100 0.001 0.01 0.1 1 10 100 Compact source intensity [mJy] Compact source intensity [mJy] (A : ASKAP, G : GMRT, L : LOFAR)

  12. Results Ⅲ Necessary source intensities for detecting IGMF ( 3 - σ CL ) IGMF is detected in the up - right regions of the lines Intensity of the Galaxy RM=3.0 rad/m 2 RM=1.0 rad/m 2 ( high latitude ) The Galaxy intensity [mJy] The Galaxy intensity [mJy] 100 100 10 10 1 1 0.1 0.1 A AL 0.01 0.01 AGL 0.001 0.001 0.001 0.01 0.1 1 10 100 0.001 0.01 0.1 1 10 100 ~0.03mJy ~0.09mJy Compact source intensity [mJy] Compact source intensity [mJy] [RM=3] [RM=1] (A : ASKAP, G : GMRT, L : LOFAR)

  13. SUMMARY IGMF may a ff ect to many phenomena in the universe W e forecast the capability of ongoing telescope for proving IGMFs of filaments by QU - fitting through Fisher analysis Assuming very simple model as the Galaxy component and RM of the IGMF is a few rad/m 2 , the IGMF can be detected by observing some compact source with intensities more than 0.03mJy by LOFAR & ASKAP By using seamless data with SKA, we would be able to detail discussion for IGMFs

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend