c r e s a n e w m e t h o d t o wa r d s m e a s u r i n

C R E S A N E W M E T H O D T O WA R D S M E A S U R I N G T - PowerPoint PPT Presentation

C R E S A N E W M E T H O D T O WA R D S M E A S U R I N G T H E - M A S S S E B A S T I A N B S E R 7 T H J U N E 2 0 1 6 | G D R N E U T R I N O 2 0 1 6 | G R E N O B L E M E A S U R I N G - M A S S Project8


  1. C R E S β€” A N E W M E T H O D T O WA R D S 
 M E A S U R I N G T H E πœ‰ - M A S S S E B A S T I A N B Γ– S E R 7 T H J U N E 2 0 1 6 | G D R N E U T R I N O 2 0 1 6 | G R E N O B L E

  2. M E A S U R I N G πœ‰ - M A S S Project8 β€” 2

  3. T R I T I U M B E TA - D E C AY 3 H β†’ 3 He + + e - + πœ‰ Μ… e β€’ Sum of masses and kinetic energy must add 
 up to mass of initial nucleus Project8 β€” 3

  4. T R I T I U M B E TA - S P E C T R U M dN q ( E βˆ’ E 0 ) 2 βˆ’ m 2 dE ∼ F ( Z, E ) p e ( E + m e ) Ξ² ) Project8 β€” 4

  5. T R I T I U M B E TA - S P E C T R U M βœ“ β—† ( E βˆ’ E 0 ) 2 βˆ’ 1 dN 2 m 2 dE ∼ F ( Z, E ) p e ( E + m e ) Ξ² ) Endpoint of spectrum changes with πœ‰ -mass 
 β†’ direct measurement of mass 
 (independent of β€œnature” of mass) Project8 β€” 5

  6. T R I T I U M B E TA - S P E C T R U M β€’ Fraction of e βˆ’ in ROI β€’ 10 eV: 2 Γ— 10 βˆ’ 10 1 eV: 2 Γ— 10 βˆ’ 13 β€’ β€’ Requirements β€’ high count rate β€’ high resolution Endpoint of spectrum changes with πœ‰ -mass 
 β†’ direct measurement of mass 
 (independent of nature of mass) Project8 β€” 6

  7. S TAT E O F T H E A R T β€” K AT R I N Key component: MAC-E filter β€’ align e - momentum p ? β†’ p k Project8 β€” 7

  8. K AT R I N Karlsruhe Trititum Neutrino Experiment Sensitivity goal β€’ m Ξ² < 200meV Limited by β€’ size of spectrometer β€’ systematic effects βž” need a new and 
 Inverted hierarchy complementary approach Normal hierarchy Project8 β€” 8

  9. C Y C L O T R O N R A D I AT I O N Cyclotron radiation eB βŠ₯ f c = 1 m e 2 Ο€ relativistic correction f Ξ³ = f c eB βŠ₯ Ξ³ = 1 m e + E kin 2 Ο€ β€œ Never measure anything but frequency ” - A. L. Schawlow Project8 β€” 9

  10. R E S O L U T I O N Energy resolution 
 f β‹… Ξ” E/E ~ Ξ” f β€’ Ξ” E/E ~ 1eV / 511 keV = 2ppm 
 β†’ easy! Frequency resolution 
 Ξ” f ~ 1/ Ξ” t β€’ Ξ” t = 20 ΞΌ s ~ 1400m @ 18keV 
 β†’ hard! A. L. Schawlow Project8 β€” 10

  11. Idea β€’ fill volume with 3 H gas β€’ add magnetic field β€’ decay electrons spiral around field lines β€’ add antennas to detect cyclotron radiation B. Monreal and J. Formaggio, Phys. Rev D80:051301 Project8 β€” 11

  12. F R E Q U E N C Y S C A L E magnetic field of 1T β†’ cyclotron frequency in K-Band 83m Kr provides electrons close to tritium endpoint Project8 β€” 12

  13. R A D I AT E D P O W E R Larmor formula q 4 B 2 1 2 ( Ξ³ 2 βˆ’ 1) sin 2 ΞΈ P ( Ξ³ , ΞΈ ) = 4 πΡ 0 3 m 2 e p e Emitted power ΞΈ β†’ pitch angle β€’ 1.1 fW for 18 keV e - at 90ΒΊ B-field β€’ 1.7 fW for 30.4 keV e - at 90ΒΊ β†’ Low-noise cryogenic RF-system needed! Project8 β€” 13

  14. P R O J E C T 8 P R O T O T Y P E Signal Project8 β€” 14

  15. WAV E G U I D E C E L L Project8 β€” 15

  16. S I G N A L A M P L I F C AT I O N A N D N O I S E fine Swedish 
 Noise temperature: T eff = 150K amplifier β€’ Primary background 
 β†’ thermal noise from waveguide and amplifiers Project8 β€” 16

  17. R E C E I V E R S TA G E β€’ Double-stage down-mixing β€’ Digitizer: 8-bit, 500Ms/s, 125MHz bandwidth 
 β†’ untriggered Project8 β€” 17

  18. M A G N E T I C B O T T L E 1 + cot 2 ΞΈ βœ“ β—† f Ξ³ = f c eB Ξ³ = 1 Harmonic e - trap β†’ 2 Ο€ m e + E kin 2 5mT Different 
 pitch angles Magentic 
 bottle coil Effect of trap on measured frequency easily calculable! Project8 β€” 18

  19. E X P E C T E D S I G N A L Spectrogram β€’ time slices 
 β†’ consecutive 
 power spectrum Signal β€’ narrow-band 
 β†’ horizontal line β€’ energy loss by radiation 
 β†’ line is tilted Project8 β€” 19

  20. A C T U A L S P E C T R O G R A M Data Taking on 06/06/2014 immediately shows trapped electrons PhysRevLett.114.162501 (2015) First detection of single-electron cyclotron radiation! Project8 β€” 20

  21. S P E C T R O G R A M I N F O R M AT I O N Project8 β€” 21

  22. E N E R G Y S P E C T R U M Initial frequency determines initial energy Project8 β€” 22

  23. F I R S T E N E R G Y S P E C T R U M Both 83m Kr lines 
 β†’ clearly seen Resolution β€’ FWHM: 140 eV Phys. Rev. Lett. 114, 162501 (2015) Project8 β€” 23

  24. I M P R O V E D T R A P Shallower Harmonic trap β€’ better field uniformity β€’ smaller acceptance β†’ lower rate & 
 better resolution Bathtub trap β€’ two coils at end of cell β€’ better uniformity β€’ larger trap size β†’ larger rate & 
 better resolution Project8 β€” 24

  25. C R E S β€” C Y C L O T R O N R A D I AT I O N 
 E M I S S O N S P E C T R O S C O P Y Hardware 
 improvements β€’ better field 
 uniformity β€’ reduced 
 noise level β€’ better 
 temperature 
 stability Project8 β€” 25

  26. P O T E N T I A L πœ‰ - M A S S R E A C H Οƒ (B) ~ 0.1ppm, 1 year of data per cm 3 per cm 3 per cm 3 per cm 3 Sensitivity limited by gas density! Project8 β€” 26

  27. P O T E N T I A L πœ‰ - M A S S R E A C H current cell 
 volume current limit per cm 3 per cm 3 inverted hierarchy bound per cm 3 Inverted hierarchy limit in reach with atomic tritium! Project8 β€” 27

  28. P R O J E C T 8 
 C O L L A B O R AT I O N T. ThΓΌmmler Karlsruhe Institute of Technology S. BΓΆser, C. Claessens * Johannes Gutenberg-UniversitΓ€t, Mainz K. Kazkaz Lawrence Livermore National Laboratory J. Formaggio, N. Oblath, E. Zayas * Massachusetts Institute of Technology * indicates graduate student M. Guigue, A. M. Jones, J. Tedeschi, B. VanDevender Pacific Northwest National Lab S. Doelman, J. Weintroub, A. Young Smithsonian Astrophysical Observatory K. Heeger, L. Saldana*, P. Slocum L. de Viveros, B. LaRoque * , B. Monreal Yale University University of California, Santa Barbara P. Doe, A. Ashtari Esfahani * , M. Fertl, E. Machado * , R.G.H. Robertson, L. Rosenberg, G. Rybka University of Washington, Center for Experimental Nuclear Physics and Astrophysics Project8 β€” 28

  29. A P H A S E D A P P R O A C H P h a s e Ti m e l i n e S o u rce R & D M i le s to n e s S c i e n ce G o al s COMPLETED s i ng le e le ct ro n co n v ers i o n e le ct ro n I 2 0 1 0 -2 0 16 8 3 m K r d e t e ct i o n s p e ct r um o f 8 3 m K r p ro o f o f co n ce p t F i n al - s t at e s p e ct r um t e s t Ku r i e p lot I I 2 0 1 5 -2 0 1 7 T 2 3 H - 3 H e m a s s d iff ere n ce s y s te m at i c s t u d i e s m πœ‰ < 1 0 - 1 0 0 eV/c 2 h i g h - r at e s e n s i t i v i t y I I I 2 0 16 -2 0 2 0 T 2 m πœ‰ < 2 eV/c 2 B- F i e l d m a p p i ng m πœ‰ < 4 0 m eV/c 2 ato m i c t r i t i um I V 2 0 1 7 … T s o u rce m e a s u re m πœ‰ o r d e t e r m i n e no r m al h i er arc hy Project8 β€” 29

  30. P H A S E - I I : T R I T I U M Improved insert installed β€’ first 83m Kr data available β†’ very promising β€’ T 2 - system ready to be installed Project8 β€” 30

  31. P H A S E I I I - L A R G E V O L U M E Example antenna configuration and vertex resolution being modeled β€’ Larger bore ~1T magnet β†’ exists β€’ Phased array antenna configurations 
 β†’ under study Project8 β€” 31

  32. M O L E C U L A R T R I T I U M L I M I TAT I O N S Molecular excitations 
 ( 3 HeT) + in daughter molecule ( 3 HeH) + β€’ blur tritium endpoint β†’ fundamental limit 
 to measurement 
 of πœ‰ -mass Need atomic tritium for ultimate experiment! Advances in High Energy Physics 2013 (2013) 39 Project8 β€” 32

  33. P H A S E I V: AT O M I C T R I T I U M Studying Ioffe-Pritchard trap β€’ couple to nuclear magnetic moment Β΅ Β· ~ βˆ† E = βˆ’ ~ B β€’ similar to BEC and anti- hydrogen traps (ALPHA) Challenges β€’ cool atomic tritium 
 to sub-Kelvin β€’ need high T/T 2 purity Alexi Radovinsky, MIT Magnet Lab Project8 β€” 33

  34. S U M M A RY Project 8: β€’ new technology: CRES - Cyclotron Radiation Emission Spectroscopy Next step β€’ measure full tritium spectrum Longer-term future β€’ large scale setup limited by tritium density and molecular excitations 
 β†’ phased antenna array 
 β†’ atomic tritium source Project8 β€” 34

  35. B A C K U P

  36. A D I A B AT I C I N VA R I A N C E Adiabatic invariance β€’ Ξ¦ = B β‹… A = B Ο€ r cycl2 
 ≃ p βŠ₯ 2 / (q β‹… B) = const Slowly changing B β€’ p βŠ₯ β†’ p || 36 Project8 β€”

  37. M A C - E F I LT E R Magnetic Adiabatic Collimation with Electrostatic Filter Combination of β€’ Adiabatically 
 changing B-field 
 β†’ convert E βŠ₯ to E || β€’ E-field to 
 filter by energy Resolution β€’ ratio of B s / B A 
 β†’ limited by size 37 Project8 β€”

  38. D I S E N TA N G L I N G E N E R G Y A N D A N G L E Electron oscillates in trap β€’ axial mode (in harmonic trap) β—† βˆ’ 1 βœ“ 4 sin ΞΈ a Ο‰ a ∝ v sin ΞΈ + m e cos 2 ΞΈ main 
 frequency β€’ sidebands to 
 noise level sidebands cyclotron peak β€’ distance depends 
 on pitch angle ΞΈ Project8 β€” 38

  39. S I D E B A N D O B S E R VAT I O N frequency [MHz] time [s] Project8 β€” 39

  40. T H R E E D E G R E E S O F F R E E D O M Project8 β€” 40

Recommend


More recommend