c r e s a n e w m e t h o d t o wa r d s m e a s u r i n
play

C R E S A N E W M E T H O D T O WA R D S M E A S U R I N G T - PowerPoint PPT Presentation

C R E S A N E W M E T H O D T O WA R D S M E A S U R I N G T H E - M A S S S E B A S T I A N B S E R 7 T H J U N E 2 0 1 6 | G D R N E U T R I N O 2 0 1 6 | G R E N O B L E M E A S U R I N G - M A S S Project8


  1. C R E S β€” A N E W M E T H O D T O WA R D S 
 M E A S U R I N G T H E πœ‰ - M A S S S E B A S T I A N B Γ– S E R 7 T H J U N E 2 0 1 6 | G D R N E U T R I N O 2 0 1 6 | G R E N O B L E

  2. M E A S U R I N G πœ‰ - M A S S Project8 β€” 2

  3. T R I T I U M B E TA - D E C AY 3 H β†’ 3 He + + e - + πœ‰ Μ… e β€’ Sum of masses and kinetic energy must add 
 up to mass of initial nucleus Project8 β€” 3

  4. T R I T I U M B E TA - S P E C T R U M dN q ( E βˆ’ E 0 ) 2 βˆ’ m 2 dE ∼ F ( Z, E ) p e ( E + m e ) Ξ² ) Project8 β€” 4

  5. T R I T I U M B E TA - S P E C T R U M βœ“ β—† ( E βˆ’ E 0 ) 2 βˆ’ 1 dN 2 m 2 dE ∼ F ( Z, E ) p e ( E + m e ) Ξ² ) Endpoint of spectrum changes with πœ‰ -mass 
 β†’ direct measurement of mass 
 (independent of β€œnature” of mass) Project8 β€” 5

  6. T R I T I U M B E TA - S P E C T R U M β€’ Fraction of e βˆ’ in ROI β€’ 10 eV: 2 Γ— 10 βˆ’ 10 1 eV: 2 Γ— 10 βˆ’ 13 β€’ β€’ Requirements β€’ high count rate β€’ high resolution Endpoint of spectrum changes with πœ‰ -mass 
 β†’ direct measurement of mass 
 (independent of nature of mass) Project8 β€” 6

  7. S TAT E O F T H E A R T β€” K AT R I N Key component: MAC-E filter β€’ align e - momentum p ? β†’ p k Project8 β€” 7

  8. K AT R I N Karlsruhe Trititum Neutrino Experiment Sensitivity goal β€’ m Ξ² < 200meV Limited by β€’ size of spectrometer β€’ systematic effects βž” need a new and 
 Inverted hierarchy complementary approach Normal hierarchy Project8 β€” 8

  9. C Y C L O T R O N R A D I AT I O N Cyclotron radiation eB βŠ₯ f c = 1 m e 2 Ο€ relativistic correction f Ξ³ = f c eB βŠ₯ Ξ³ = 1 m e + E kin 2 Ο€ β€œ Never measure anything but frequency ” - A. L. Schawlow Project8 β€” 9

  10. R E S O L U T I O N Energy resolution 
 f β‹… Ξ” E/E ~ Ξ” f β€’ Ξ” E/E ~ 1eV / 511 keV = 2ppm 
 β†’ easy! Frequency resolution 
 Ξ” f ~ 1/ Ξ” t β€’ Ξ” t = 20 ΞΌ s ~ 1400m @ 18keV 
 β†’ hard! A. L. Schawlow Project8 β€” 10

  11. Idea β€’ fill volume with 3 H gas β€’ add magnetic field β€’ decay electrons spiral around field lines β€’ add antennas to detect cyclotron radiation B. Monreal and J. Formaggio, Phys. Rev D80:051301 Project8 β€” 11

  12. F R E Q U E N C Y S C A L E magnetic field of 1T β†’ cyclotron frequency in K-Band 83m Kr provides electrons close to tritium endpoint Project8 β€” 12

  13. R A D I AT E D P O W E R Larmor formula q 4 B 2 1 2 ( Ξ³ 2 βˆ’ 1) sin 2 ΞΈ P ( Ξ³ , ΞΈ ) = 4 πΡ 0 3 m 2 e p e Emitted power ΞΈ β†’ pitch angle β€’ 1.1 fW for 18 keV e - at 90ΒΊ B-field β€’ 1.7 fW for 30.4 keV e - at 90ΒΊ β†’ Low-noise cryogenic RF-system needed! Project8 β€” 13

  14. P R O J E C T 8 P R O T O T Y P E Signal Project8 β€” 14

  15. WAV E G U I D E C E L L Project8 β€” 15

  16. S I G N A L A M P L I F C AT I O N A N D N O I S E fine Swedish 
 Noise temperature: T eff = 150K amplifier β€’ Primary background 
 β†’ thermal noise from waveguide and amplifiers Project8 β€” 16

  17. R E C E I V E R S TA G E β€’ Double-stage down-mixing β€’ Digitizer: 8-bit, 500Ms/s, 125MHz bandwidth 
 β†’ untriggered Project8 β€” 17

  18. M A G N E T I C B O T T L E 1 + cot 2 ΞΈ βœ“ β—† f Ξ³ = f c eB Ξ³ = 1 Harmonic e - trap β†’ 2 Ο€ m e + E kin 2 5mT Different 
 pitch angles Magentic 
 bottle coil Effect of trap on measured frequency easily calculable! Project8 β€” 18

  19. E X P E C T E D S I G N A L Spectrogram β€’ time slices 
 β†’ consecutive 
 power spectrum Signal β€’ narrow-band 
 β†’ horizontal line β€’ energy loss by radiation 
 β†’ line is tilted Project8 β€” 19

  20. A C T U A L S P E C T R O G R A M Data Taking on 06/06/2014 immediately shows trapped electrons PhysRevLett.114.162501 (2015) First detection of single-electron cyclotron radiation! Project8 β€” 20

  21. S P E C T R O G R A M I N F O R M AT I O N Project8 β€” 21

  22. E N E R G Y S P E C T R U M Initial frequency determines initial energy Project8 β€” 22

  23. F I R S T E N E R G Y S P E C T R U M Both 83m Kr lines 
 β†’ clearly seen Resolution β€’ FWHM: 140 eV Phys. Rev. Lett. 114, 162501 (2015) Project8 β€” 23

  24. I M P R O V E D T R A P Shallower Harmonic trap β€’ better field uniformity β€’ smaller acceptance β†’ lower rate & 
 better resolution Bathtub trap β€’ two coils at end of cell β€’ better uniformity β€’ larger trap size β†’ larger rate & 
 better resolution Project8 β€” 24

  25. C R E S β€” C Y C L O T R O N R A D I AT I O N 
 E M I S S O N S P E C T R O S C O P Y Hardware 
 improvements β€’ better field 
 uniformity β€’ reduced 
 noise level β€’ better 
 temperature 
 stability Project8 β€” 25

  26. P O T E N T I A L πœ‰ - M A S S R E A C H Οƒ (B) ~ 0.1ppm, 1 year of data per cm 3 per cm 3 per cm 3 per cm 3 Sensitivity limited by gas density! Project8 β€” 26

  27. P O T E N T I A L πœ‰ - M A S S R E A C H current cell 
 volume current limit per cm 3 per cm 3 inverted hierarchy bound per cm 3 Inverted hierarchy limit in reach with atomic tritium! Project8 β€” 27

  28. P R O J E C T 8 
 C O L L A B O R AT I O N T. ThΓΌmmler Karlsruhe Institute of Technology S. BΓΆser, C. Claessens * Johannes Gutenberg-UniversitΓ€t, Mainz K. Kazkaz Lawrence Livermore National Laboratory J. Formaggio, N. Oblath, E. Zayas * Massachusetts Institute of Technology * indicates graduate student M. Guigue, A. M. Jones, J. Tedeschi, B. VanDevender Pacific Northwest National Lab S. Doelman, J. Weintroub, A. Young Smithsonian Astrophysical Observatory K. Heeger, L. Saldana*, P. Slocum L. de Viveros, B. LaRoque * , B. Monreal Yale University University of California, Santa Barbara P. Doe, A. Ashtari Esfahani * , M. Fertl, E. Machado * , R.G.H. Robertson, L. Rosenberg, G. Rybka University of Washington, Center for Experimental Nuclear Physics and Astrophysics Project8 β€” 28

  29. A P H A S E D A P P R O A C H P h a s e Ti m e l i n e S o u rce R & D M i le s to n e s S c i e n ce G o al s COMPLETED s i ng le e le ct ro n co n v ers i o n e le ct ro n I 2 0 1 0 -2 0 16 8 3 m K r d e t e ct i o n s p e ct r um o f 8 3 m K r p ro o f o f co n ce p t F i n al - s t at e s p e ct r um t e s t Ku r i e p lot I I 2 0 1 5 -2 0 1 7 T 2 3 H - 3 H e m a s s d iff ere n ce s y s te m at i c s t u d i e s m πœ‰ < 1 0 - 1 0 0 eV/c 2 h i g h - r at e s e n s i t i v i t y I I I 2 0 16 -2 0 2 0 T 2 m πœ‰ < 2 eV/c 2 B- F i e l d m a p p i ng m πœ‰ < 4 0 m eV/c 2 ato m i c t r i t i um I V 2 0 1 7 … T s o u rce m e a s u re m πœ‰ o r d e t e r m i n e no r m al h i er arc hy Project8 β€” 29

  30. P H A S E - I I : T R I T I U M Improved insert installed β€’ first 83m Kr data available β†’ very promising β€’ T 2 - system ready to be installed Project8 β€” 30

  31. P H A S E I I I - L A R G E V O L U M E Example antenna configuration and vertex resolution being modeled β€’ Larger bore ~1T magnet β†’ exists β€’ Phased array antenna configurations 
 β†’ under study Project8 β€” 31

  32. M O L E C U L A R T R I T I U M L I M I TAT I O N S Molecular excitations 
 ( 3 HeT) + in daughter molecule ( 3 HeH) + β€’ blur tritium endpoint β†’ fundamental limit 
 to measurement 
 of πœ‰ -mass Need atomic tritium for ultimate experiment! Advances in High Energy Physics 2013 (2013) 39 Project8 β€” 32

  33. P H A S E I V: AT O M I C T R I T I U M Studying Ioffe-Pritchard trap β€’ couple to nuclear magnetic moment Β΅ Β· ~ βˆ† E = βˆ’ ~ B β€’ similar to BEC and anti- hydrogen traps (ALPHA) Challenges β€’ cool atomic tritium 
 to sub-Kelvin β€’ need high T/T 2 purity Alexi Radovinsky, MIT Magnet Lab Project8 β€” 33

  34. S U M M A RY Project 8: β€’ new technology: CRES - Cyclotron Radiation Emission Spectroscopy Next step β€’ measure full tritium spectrum Longer-term future β€’ large scale setup limited by tritium density and molecular excitations 
 β†’ phased antenna array 
 β†’ atomic tritium source Project8 β€” 34

  35. B A C K U P

  36. A D I A B AT I C I N VA R I A N C E Adiabatic invariance β€’ Ξ¦ = B β‹… A = B Ο€ r cycl2 
 ≃ p βŠ₯ 2 / (q β‹… B) = const Slowly changing B β€’ p βŠ₯ β†’ p || 36 Project8 β€”

  37. M A C - E F I LT E R Magnetic Adiabatic Collimation with Electrostatic Filter Combination of β€’ Adiabatically 
 changing B-field 
 β†’ convert E βŠ₯ to E || β€’ E-field to 
 filter by energy Resolution β€’ ratio of B s / B A 
 β†’ limited by size 37 Project8 β€”

  38. D I S E N TA N G L I N G E N E R G Y A N D A N G L E Electron oscillates in trap β€’ axial mode (in harmonic trap) β—† βˆ’ 1 βœ“ 4 sin ΞΈ a Ο‰ a ∝ v sin ΞΈ + m e cos 2 ΞΈ main 
 frequency β€’ sidebands to 
 noise level sidebands cyclotron peak β€’ distance depends 
 on pitch angle ΞΈ Project8 β€” 38

  39. S I D E B A N D O B S E R VAT I O N frequency [MHz] time [s] Project8 β€” 39

  40. T H R E E D E G R E E S O F F R E E D O M Project8 β€” 40

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend