c ompleteness of h ardy n on locality
play

C OMPLETENESS OF H ARDY N ON - LOCALITY : C ONSEQUENCES & A - PowerPoint PPT Presentation

C OMPLETENESS OF H ARDY N ON - LOCALITY : C ONSEQUENCES & A PPLICATIONS Shane Mansfield QPL 2014 Overview Theorem* For all ( 2 , k , 2 ) and ( 2 , 2 , l ) scenarios, Hardy non-locality ( ) Logical non-locality Consequences &


  1. C OMPLETENESS OF H ARDY N ON - LOCALITY : C ONSEQUENCES & A PPLICATIONS Shane Mansfield QPL 2014

  2. Overview Theorem* For all ( 2 , k , 2 ) and ( 2 , 2 , l ) scenarios, Hardy non-locality ( ) Logical non-locality Consequences & Applications 1. Hardy subsumes other paradoxes 2. Complexity results for logical non-locality 3. Bell states are anomalous 4. Hardy non-locality can be realised with certainty *S Mansfield, T Fritz - Foundations of Physics, 2012

  3. Non-locality o A o B measurement measurement device device m A m B preparation p Bell-CHSH Inequality: � E ( m A , m B )+ E ( m A , m 0 B )+ E ( m 0 A , m B ) � E ( m 0 A , m 0 �  2 � � B )

  4. Logical Non-locality A more intuitive approach to non-locality • Probabilities � ! Truth values (possibilities) • Inequalities � ! Logical deductions Logical NL > NL Examples: • Hardy, GHZ, KS, etc. • Hardy’s argument is considered to be the simplest

  5. Hardy’s Non-locality Paradox • Outcome ( " , " ) is possible • If A measures spin and B Bob measures colour , or vice versa, the outcomes ( " , W ) or " # G W ( W , " ) are never obtained " 1 0 • When spin " is recorded, the Alice # other subsystem must have colour G G 0 • Since ( " , " ) is possible, then W 0 ( G , G ) must be possible • Contradiction!

  6. Generalisations of Hardy Non-locality Measurements have up to l outcomes o 0 o 0 ··· o 1 ··· o m 2 o m 2 + 1 ··· o l 1 l o 0 ··· 1 0 0 1 . . . o 0 l ··· o 1 0 0 . . . ... . . . . . . o m 1 0 ··· 0 o m 1 + 1 0 . . . . . . o l 0

  7. Generalisations of Hardy Non-locality k measurement settings per party 1 0 0 ... 0 ...

  8. Generalisations of Hardy Non-locality n > 2 parties Figure : The n = 3 Hardy paradox. Blue $ truth value ‘1’, red $ ‘0’

  9. Completeness of Hardy Non-locality Hardy non-locality can be defined for all ( n , k , l ) scenarios. • n parties • k measurement settings per party • l outcomes to each measurement Theorem* For all ( 2 , k , 2 ) and ( 2 , 2 , l ) scenarios, Hardy non-locality ( ) Logical non-locality *S Mansfield, T Fritz - Foundations of Physics, 2012

  10. Hardy Subsumes Other Paradoxes The Chen et al. paradox * occurs if at least one starred entry is non-zero. Relevant entries are either above or below the diagonal. * ··· * 0 ··· 0 . . ... ... . . . . * 0 0 ··· 0 . ... . . 0 . ... . 0 . ··· 0 0 *JL Chen, A Cabello, ZP Xu, HY Su, C Wu, LC Kwek - Physical Review A, 2013

  11. Hardy Subsumes Other Paradoxes The Chen et al. paradox * occurs if at least one starred entry is non-zero. Relevant entries are either above or below the diagonal. 1 ··· * 0 ··· 0 . . ... ... . . . . * 0 0 ··· 0 . ... . . 0 . ... . 0 . ··· 0 0 *JL Chen, A Cabello, ZP Xu, HY Su, C Wu, LC Kwek - Physical Review A, 2013

  12. Hardy Subsumes Other Paradoxes The Chen et al. paradox * occurs if at least one starred entry is non-zero. Relevant entries are either above or below the diagonal. 1 0 ··· 0 0 0 . . . 0 *JL Chen, A Cabello, ZP Xu, HY Su, C Wu, LC Kwek - Physical Review A, 2013

  13. Hardy Subsumes Other Paradoxes The Chen et al. paradox * occurs if at least one starred entry is non-zero. Relevant entries are either above or below the diagonal. 1 0 ··· 0 0 . . . 0 0 *JL Chen, A Cabello, ZP Xu, HY Su, C Wu, LC Kwek - Physical Review A, 2013

  14. Complexity of Logical Non-locality Hardy non-locality ( ) Logical non-locality So, in relevant scenarios, one has only to search for Hardy paradoxes Proposition Polynomial algorithms can be given for deciding logical non-locality in ( 2 , 2 , l ) and ( 2 , k , 2 ) scenarios.

  15. Bell States are Anomalous Are all entangled states logically non-local? Logically Non-local • Hardy: all non-maximally entangled 2-qubit states • Abramsky, Constantin & Ying: all entangled n -qubit states • GHZ, Cabello: Many maximally entangled n > 2 qubit states Exception! • Bell States (maximally entangled 2-qubit states) 1 p ( | 00 i + | 11 i ) , etc. 2

  16. Bell States Are Anomalous: Proof (Sketch) • Need only consider 1 p ( | 00 i + | 11 i ) , etc. 2 • Projective measurements necessarily lead to ( 2 , k , 2 ) scenarios Claim For any observables { A 1 , A 2 , B 3 , B 4 } there is no Hardy paradox

  17. Bell States Are Anomalous: Proof (Sketch) Claim For any observables { A 1 , A 2 , B 3 , B 4 } there is no Hardy paradox State: Outcome probabilities: 1 p ( | 00 i + | 11 i ) , etc. 2 ! ⇣ ⌘ cos θ j sin θ j 1 2 cos θ k 2 + e � i φ j + φ k 2 sin θ k ⌦ 0 j 0 k | ψ ↵ = p 2 2 Observables: { A 1 , A 2 , B 3 , B 4 } ! ⇣ ⌘ 1 cos θ j 2 sin θ k sin θ j 2 cos θ k 2 + e � i φ j � φ k ⌦ 0 j 1 k | ψ ↵ = p 2 2 Eigenvectors: ! ⇣ ⌘ 1 sin θ j 2 cos θ k sin θ j 2 cos θ k 2 + e i φ j � φ k ⌦ ↵ 1 j 0 k | ψ = p 2 2 | 0 i i = cos θ i 2 | 0 i + e i φ i sin θ i 2 ! ⇣ ⌘ 1 sin θ j 2 sin θ k cos θ j 2 cos θ k 2 + e i φ j + φ k ⌦ ↵ 1 j 1 k | ψ = p | 1 i i = sin θ i 2 | 0 i + e � i φ i cos θ i 2 2 2

  18. Bell States Are Anomalous: Proof (Sketch) Claim For any observables { A 1 , A 2 , B 3 , B 4 } there is no Hardy paradox State: 1 p ( | 00 i + | 11 i ) , etc. 2 Observables: Outcome probabilities: { A 1 , A 2 , B 3 , B 4 } p ( 01 | AB ) = p ( 10 | AB ) Eigenvectors: p ( 00 | AB ) = p ( 11 | AB ) | 0 i i = cos θ i 2 | 0 i + e i φ i sin θ i 2 | 1 i i = sin θ i 2 | 0 i + e � i φ i cos θ i 2

  19. Bell States Are Anomalous: Proof (Sketch) Claim For any observables { A 1 , A 2 , B 3 , B 4 } there is no Hardy paradox Symmetries + No-signalling + Hardy Paradox: 1 ⁄ 2 0 1 ⁄ 2 0 0 1 ⁄ 2 0 1 ⁄ 2 Outcome probabilities: 1 ⁄ 2 0 1-q ⁄ 2 q ⁄ 2 p ( 01 | AB ) = p ( 10 | AB ) 0 1 ⁄ 2 q ⁄ 2 1-q ⁄ 2 p ( 00 | AB ) = p ( 11 | AB ) 0 < q  1 q = 0: Local q = 1: PR box

  20. Bell States Are Anomalous: Proof (Sketch) Claim For any observables { A 1 , A 2 , B 3 , B 4 } there is no Hardy paradox Symmetries + No-signalling + Hardy Paradox: Outcome probabilities: 1 ⁄ 2 0 1 ⁄ 2 0 p ( 01 | AB ) = p ( 10 | AB ) 0 1 ⁄ 2 0 1 ⁄ 2 p ( 00 | AB ) = p ( 11 | AB ) 1 ⁄ 2 0 1-q ⁄ 2 q ⁄ 2 0 1 ⁄ 2 q ⁄ 2 1-q ⁄ 2 Observables: A 1 = A 2 = B 3 = B 4 = ± X 0 < q  1 q = 0: Local q = 1: PR box

  21. Bell States Are Anomalous: Proof (Sketch) Claim For any observables { A 1 , A 2 , B 3 , B 4 } there is no Hardy paradox Symmetries + No-signalling + Hardy Paradox: Outcome probabilities: p ( 01 | AB ) = p ( 10 | AB ) 1 ⁄ 2 0 1 ⁄ 2 0 p ( 00 | AB ) = p ( 11 | AB ) 0 1 ⁄ 2 0 1 ⁄ 2 1 ⁄ 2 0 1-q ⁄ 2 q ⁄ 2 Observables: 0 1 ⁄ 2 q ⁄ 2 1-q ⁄ 2 A 1 = A 2 = B 3 = B 4 = ± X ) q = 0 0 < q  1 Contradiction! q = 0: Local q = 1: PR box

  22. The Paradoxical Probability Bob • An almost probability free non-locality proof " # G W • Experimental motivations for " 0.09 0 maximising this probability Alice # • Considered a measure of the G 0 quality of Hardy non-locality W 0 Model Probability p 5 5 � 11 Hardy ⇡ 0 . 09 2 Hardy Ladder ( k ! ∞ ) 0 . 5 Ghosh et al. (tripartite) 0 . 125 Choudhary (non-quantum, NS ) 0 . 5 Chen et al. ( l ! ∞ ) ⇡ 0 . 4

  23. Probability Free Hardy Non-locality? • Recall: Chen et al. sum paradoxical probabilities * ··· * 0 ··· 0 . . ... ... . . . . * 0 0 ··· 0 . ... . . 0 . ... . 0 . 0 ··· 0

  24. Probability Free Hardy Non-locality? • Recall: Chen et al. sum paradoxical probabilities • If we allow this, we can achieve Hardy non-locality with certainty ! Example: the PR box 1 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0

  25. Probability Free Hardy Non-locality? • Recall: Chen et al. sum paradoxical probabilities • If we allow this, we can achieve Hardy non-locality with certainty ! Example: the PR box 1 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0

  26. Probability Free Hardy Non-locality? • Recall: Chen et al. sum paradoxical probabilities • If we allow this, we can achieve Hardy non-locality with certainty ! Example: the PR box 1 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0

  27. Hardy Non-locality With Certainty The GHZ model: Local X & Y measurements on | GHZ i = 1 p ( | 000 i + | 111 i ) 2 000 001 010 011 100 101 110 111 X X X 1 0 0 1 0 1 1 0 X Y Y 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 Y X X Y Y X 0 1 1 0 1 0 0 1

  28. Hardy Non-locality With Certainty The GHZ model: Local X & Y measurements on | GHZ i = 1 p ( | 000 i + | 111 i ) 2

  29. Hardy Non-locality With Certainty Model Probability p 5 � 11 5 Hardy ⇡ 0 . 09 2 Hardy Ladder ( k ! ∞ ) 0 . 5 Ghosh et al. (tripartite) 0 . 125 Choudhary (non-quantum, NS ) 0 . 5 Chen et al. ( l ! ∞ ) ⇡ 0 . 4 PR box (non-quantum, NS ) 1 GHZ 1

  30. Conclusion Theorem* For all ( 2 , k , 2 ) and ( 2 , 2 , l ) scenarios, Hardy non-locality ( ) Logical non-locality Consequences & Applications 1. Hardy subsumes other paradoxes 2. Complexity results for logical non-locality 3. Bell states are anomalous (not logically non-local) 4. Hardy non-locality can be realised with certainty *S Mansfield, T Fritz - Foundations of Physics, 2012

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend