buffer intensity
play

Buffer Intensity g Amount of strong 1 .2 1 .0 0 .8 0 .6 0 - PDF document

CEE 680 Lecture #17 2/24/2020 Print version Updated: 24 February 2020 Lecture #17 Acids/Bases and Buffers: Fundamentals & Buffer Intensity (Benjamin, Chapter 5) (Stumm & Morgan, Chapt. 3 ) David Reckhow CEE 680 #17 1 10 -2 M HAc


  1. CEE 680 Lecture #17 2/24/2020 Print version Updated: 24 February 2020 Lecture #17 Acids/Bases and Buffers: Fundamentals & Buffer Intensity (Benjamin, Chapter 5) (Stumm & Morgan, Chapt. 3 ) David Reckhow CEE 680 #17 1 10 -2 M HAc Buffer Intensity g  Amount of strong 1 .2 1 .0 0 .8 0 .6 0 .4 0 .2 0 .0 -0 .2 1 2 acid or base 1 1 required to cause a M id -p o in t 1 0 specific small shift p H 4 .7 9 in pH S ta rtin g P o in t 8 p H 3 .3 5 E n d P o in t pH 7  p H 8 .3 5 pH dC dC 6     B A  C B 5 dpH dpH  pH  4 C B 3 Slope = 1/  2 -0 .2 0 .0 0 .2 0 .4 0 .6 0 .8 1 .0 1 .2 f David Reckhow CEE 680 #17 2 1

  2. CEE 680 Lecture #17 2/24/2020 Buffers: Acetic Acid with Acid/Base Addition  1. List all species present  (use NaOH and HCl as acid/base) Six total  H + , OH ‐ , HAc, Ac ‐ , Na + , Cl ‐  2. List all independent equations  equilibria 1  K a = [H + ][Ac ‐ ]/[HAc] = 10 ‐ 4.77 2  K w = [H + ][OH ‐ ] = 10 ‐ 14  mass balances 5 C A = [Cl - ]  C T = [HAc]+[Ac ‐ ] 3 C B = [Na + ] 6  electroneutrality:  (positive charges) =  (negative charges)  Note: we can’t use the PBE because we’re essentially adding an acid and its conjugate base  [Na + ] + [H + ] = [OH ‐ ] + [Ac ‐ ] + [Cl ‐ ] 4 David Reckhow CEE 680 #17 3 Acetic Acid with Acid/Base Addition (cont.) 2 K w = [H + ][OH - ]  3. Use ENE, substitute & solve for C B ‐ C A [OH - ] = K w /[H + ] 4  [Na + ] + [H + ] = [OH ‐ ] + [Ac ‐ ] + [Cl ‐ ] 5 1,2,3,4,5,6 C A = [Cl - ]  C B + [H + ] = K w /[H + ] + K a C T /{K a +[H + ]} + C A C B = [Na + ] 6 3 C T = [HAc]+[Ac - ]  C B ‐ C A = K w /[H + ] ‐ [H + ] + K a C T /{K a +[H + ]} [HAc]= C T - [Ac - ] 1 K a = [H + ][Ac - ]/[HAc] K a = [H + ][Ac - ]/ {C T -[Ac - ]}  4. Take derivative K a C-K a [Ac - ]= [H + ][Ac - ] 1+3  with respect to [H + ] K a C=[Ac - ]{K a +[H + ]} [Ac - ]=K a C T /{K a +[H + ]} David Reckhow CEE 680 #17 4 2

  3. CEE 680 Lecture #17 2/24/2020 Acetic Acid with Acid/Base Addition (cont.)  Take the derivative with respect to [H + ] of:  C B = C A + K w /[H + ] ‐ [H + ] + K a C T /{K a +[H + ]} dC K C K     B w 1 T a     2 2 d [ H ] [ H ]   K [ H ] a  But this is not exactly what we want  Factor out  equation  dC dC d [ H ]   B  B *  dpH d [ H ] dpH  and recall:  ln[ H ]      pH log[ H ] 2 . 303   d ln[ H ] d [ H ]    dpH  2 . 303 2 . 303 [ H ]  d [ H ]    2 . 303 [ H ] dpH David Reckhow CEE 680 #17 5 Acetic Acid with Acid/Base Addition (cont.)  so: dC     2 . 303 [ H ] B  d [ H ]  and combining:   K C K          2 . 303 [ H ] w 1 T a      2 2 [ H ]   K [ H ]   a  [ HA ] [ H ]       K C K [ H ] 0   C K [ H ]       2 . 303 w [ H ] T a T a      2  [ H ]   [ A ] K K [ H ]      a a 1   C K [ H ] T a      [ HA ][ A ]             2 . 303 [ OH ] [ H ] C     2 . 303 [ OH ] [ H ] C    T 0 1  T 2   [ HA ] [ A ]   David Reckhow CEE 680 #17 6 3

  4. CEE 680 Lecture #17 2/24/2020 0 Example H + OH - -1 Trichlorophenol Trichlorophenate ion -2 -3 Log C -4 -5  Trichlorophenol -6  pKa = 6.00 -7 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14  C T = 10 ‐ 2 pH 0.0 1.0 Mid-point 0.2 0.8 pH 6.0 Starting Point 0.4 0.6 pH 4 g f 0.6 0.4 End Point pH 9 0.8 0.2 1.0 0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 pH David Reckhow CEE 680 #17 7 0.006  See also Local Maximimum @ g=0.5 S&M fig 0.005 Buffer Intensity, B (M/pH) 3.10 0.004 0.003 0.002 0.001 Local Min. Local Min. @ g=0 @ g=1 0.000 2 3 4 5 6 7 8 9 10 11 12 pH David Reckhow CEE 680 #17 8 4

  5. CEE 680 Lecture #17 2/24/2020 Equations for polyprotic acids  Analogous to the monoprotic systems    monoprotic         2 . 303 [ OH ] [ H ] C T 0 1    diprotic            2 . 303 [ OH ] [ H ] C C T 0 1 T 1 2  triprotic                 2 . 303 [ OH ] [ H ] C C C T 0 1 T 1 2 T 2 3 David Reckhow CEE 680 #17 9 Buffer example  Design a buffer using phosphate that will hold its pH at 7.0  0.05 even when adding 10 ‐ 3 moles per liter of a strong acid or base  first determine the required buffer intensity  10 3 dC B     0 . 02 dpH 0 . 05  Next look at the buffer equation and try to simplify based on pH range of interest                 2 . 303 [ OH ] [ H ] C C C T 0 1 T 1 2 T 2 3 0 0 0 0 David Reckhow CEE 680 #17 10 5

  6. CEE 680 Lecture #17 2/24/2020 Buffer example (cont.)  This gives us the simplified version that can be further simplified   C     2 . 303 T 1 2 0 0 0 0 0 . 02          1 1   2    K  K K    K [ H ] [ H ] [ H ] 2 . 303 1 1 2 2 3 3    K   2 K K K   [ H ] [ H ] [ H ] 1 1 2 2 0 . 02          1 1   K  2 . 303 1 [ H ] 1 2     K  [ H ] 2 0 . 02     1 2 . 303 4 . 22  0 . 037 M David Reckhow CEE 680 #17 11 Acid Neutralizing Capacity  Net deficiency of protons  with respect to a proton reference level  when the reference level is H 2 CO 3 , the ANC=Alkalinity  conservative, not affected by T or P  In a monoprotic system:  f x     [ANC] = [A ‐ ] + [OH ‐ ] ‐ [H + ]   ANC dpH = C T  1 + [OH ‐ ] ‐ [H + ]   f n David Reckhow CEE 680 #17 12 6

  7. CEE 680 Lecture #17 2/24/2020 David Reckhow CEE 680 #17 13 David Reckhow CEE 680 #17 14 7

  8. CEE 680 Lecture #17 2/24/2020  To next lecture David Reckhow CEE 680 #17 15 8

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend