boundary theories for spins in lattices
play

Boundary theories for spins in lattices J. IGNACIO CIRAC GGI, - PowerPoint PPT Presentation

Boundary theories for spins in lattices J. IGNACIO CIRAC GGI, Florence, May 24, 2012 IC, Poilblanc, Schuch, and Verstraete, Phys. Rev. B 83, 245134 (2011) Poilblanc, Schuch, Perez-Garcia, IC, arXiv:1202.0947 Schuch, Poilblanc, IC, Perez-Garcia,


  1. Boundary theories for spins in lattices J. IGNACIO CIRAC GGI, Florence, May 24, 2012 IC, Poilblanc, Schuch, and Verstraete, Phys. Rev. B 83, 245134 (2011) Poilblanc, Schuch, Perez-Garcia, IC, arXiv:1202.0947 Schuch, Poilblanc, IC, Perez-Garcia, arXiv:1203.4816

  2. TENSOR NETWORKS N spins: States and observables can be written in terms of tensors ∑ Ψ 〉 = 〉 ,..., i i i | | ,..., c i i 1 N i 1 ,..., N i 1 c 1 N i i N ∑ j i = 〉〈 ,..., j j | ,..., ,..., | X X j j i i 1 N 1 1 j ,..., j X 1 i ,..., i 1 N 1 N N 1 N i ,..., i , j i 1 i j N N N Expectation values are tensor contractions: ∑ ∗ 〈 Ψ Ψ 〉 = j ,..., j i ,..., i | | X c X c 1 1 N N j ,..., j i ,..., i 1 1 N N i , j

  3. TENSOR NETWORKS Rewrite tensors in terms of smaller tensors: STATES: i Tensor network states 1 i 1 = or i Tensor product states N i N OBSERVABLES: similarly a b c Why? Efficient description: N d D Guiding principle: entanglement

  4. TENSOR NETWORKS EXAMPLES Multi-scale ENTANGLEMENT Projected ENTANGLED-pair states renormalization ansatz MERA: G.Vidal PEPS: F.Verstraete, I. Cirac i 11 i i 1 N i 1 N i NN

  5. TENSOR NETWORKS PEPS Projected ENTANGLED-pair states Thermal equilibrium N 2 Local interactions Arbitrary dimensions (Hastings) physically relevant Numerical algorithms

  6. TENSOR NETWORKS PEPS Projected ENTANGLED-pair states Thermal equilibrium N Local interactions 2 Arbitrary dimensions (Hastings) physically relevant Many-body physics i A n αβγδ γ β α i δ n

  7. PEPS Projected entangled-pairs: | Ψ〉 Physical spins:

  8. PEPS Projected entangled-pairs: | Ψ〉 Φ〉 ⊗ N | Physical spins: Auxiliary spins:

  9. PEPS Projected entangled-pairs: | Ψ〉 Φ〉 ⊗ N | Physical spins: Auxiliary spins: ∑ = 〉〈 α β γ δ i | , , , | P A i αβγδ P‘s act locally Contain the information about the state Similar to AKLT construction

  10. PEPS Projected entangled-pairs: | Ψ〉 Φ〉 ⊗ N | Physical spins: Auxiliary spins: ∑ = 〉〈 α β γ δ i | , , , | P A i αβγδ γ α β i A n αβγδ i δ n

  11. PEPS Area law: A ρ  ( ) S N ∂ A A

  12. PEPS Area law:

  13. PEPS Area law: A Only the auxiliary particles at the boundary contribute Linear maps P cannot increase entanglement

  14. PEPS Area law: Only the auxiliary particles at the boundary contribute Linear maps P cannot increase entanglement ρ  ( ) S N ∂ A A # degrees of freedom in the bulk scale with the size of boundary

  15. PEPS Bulk-boundary correspondence: Bulk Boundary A U ⊗ → ⊗∂ UU = U U = A A : isommetry † † U H h 1 h 1 H ρ σ ∂ = ρ † U U A A A ∂ = † X x UX U A A A

  16. PEPS Bulk-boundary correspondence: Bulk Boundary ρ σ ∂ = ρ † U U A A A ∂ = † X x UX U A A A Expectation values: 〈 〉 = ρ = ρ = σ = 〈 〉 † † tr( ) tr( ) tr( ) X X UX U U U x x ∂ ∂ ∂ A A A A A A A A Boundary Hamiltonian: ρ = − σ ∂ = − H H ∂ e e A A A A ∂ = † H UH U A A σ = σ Entanglement spectrum:: ( ) ( ) H H ∂ A A The standard ES is exactly the spectrum of the boundary Hamiltonian The boundary Hamltonian has a physical meaning

  17. PEPS Boundary theory: The boundary operators can be determined using PEPS algorithms σ ∂ = − H ∂ e A A The boundary Hamiltonian reflects properties of the original state | Ψ〉 θ ⇒ = Ψ〉 = Ψ〉 i † | | U H U H Symmetries: u e g ∂ ∂ g A g A g Topology: Non-local projector Criticality: Ψ If is the ground state of a GAPPED LOCAL Hamiltonian, then the boundary Hamiltonian is LOCAL

  18. PEPS Examples: AKLT model in 2D - Auxiliary particles s=1/2 H ∂ is the 1D Heisenberg Hamiltonian (2) su - Symmetry: A - Finite correlation length ES corresponds to c=1 CFT Kitaev‘s toric code - Auxiliary particles s=1/2 σ ∂ ( ) is a non-local projector Z Z - Symmetry: 2 A 2 - Finite correlation length - Topological ES is flat RVB on a Kagome lattice - Auxiliary particles s=1 σ ∂ ( ) contains a non-local projector 2 Z (2) su - Symmetry: A - Finite correlation length H ∂ is a 1D t-J model A - Topological

  19. PEPS Z spin liquids 2 Kitaev‘s toric code o-RVB (RK) (square lattice) (Kagome lattice) RVB (Kagome lattice)

  20. PEPS Z spin liquids 2 local unitary Kitaev‘s toric code o-RVB (RK) (square lattice) (Kagome lattice) local invertible RVB (Kagome lattice) They correspond to the same phase RVB is ground state of local (FF) Hamiltonian (4-fold degeneracy)

  21. OUTLINE How to determine the boundary theory for a PEPS Symmetries Finite correlation length Examples

  22. PEPS BOUNDARY THEORY Reduced state: Combine the tensors of B regions A and B A A B | Ψ〉 boundary Polar decomposition: Reduced state: = σ σ V U A B σ ∂ = σ σ σ ρ = Ψ〉〈Ψ σ σ σ † tr (| |) U U A A B A A B A B A

  23. PEPS BOUNDARY THEORY In practice: 1.- Contract the tensor A with ist complex conjugate = σ σ , 2.- Determine A B

  24. PEPS BOUNDARY THEORY Cylinder: Exact calculations N ×∞ A σ = σ Reflection symmetry: A B σ ∂ = σ 2 A A with MPS algorithms ∞×∞

  25. PEPS SYMMETRIES Gauge : Y − 1 = X − 1 X Y i i A B αβγδ n n αβγδ Different tensors give rise to the same state: Under general conditions, the above is the only possibility (Perez-Garcia, Sanz, Gonzalez, Wolf, IC, 2009)

  26. PEPS SYMMETRIES θ Ψ〉 = Ψ〉 i | | U e g Symmetry : g must be related by a local Gauge trafo u ⊗ = N Global symmetry: U g g u g † w = g † v v g g w g where the v‘s and w‘s are (projective) representations of the same group ⊗∂ ⊗∂ σ = σ † A A v v Boundary operator has the same symmetry: ∂ ∂ A g A g

  27. PEPS FINITE CORRELATION LENGTH Cylinder : α  1, α  2, α  RG 3, σ ? A = For pure states (MPS): full classification (Verstraete, IC, Latorre, Rico, Wolf, 2005)

  28. PEPS FINITE CORRELATION LENGTH RG for mixed states MPDO : entangled states Trace-preserving CPM ∑ − σ = ⊕ h + Boundary theory: n n , 1 e ∂ A Local Hamiltonian Degeneracy and topology

  29. PEPS EXAMPLES 2D AKLT in a 2-leg ladder/square lattice: N N v v N h S = spin 2 ∑ = ∆ ∆ ∆ ∆ Deformed AKLT Hamiltonian ( ) ( ) ( ) ( ) H Q Q P Q Q n m n m , m n < > , n m (2) / (1) Symmetry: su u nematic deformation projector onto S=4 subspace ∆ = e − ∆ 2 8 S ( ) Q z Ground state: PEPS with D=2 ∂ = ∑ ∑ all possible terms with range-r interacctions Boundary Hamiltonian: H d A r r

  30. PEPS EXAMPLES 2D AKLT in a 2-leg ladder/square lattice: For AKLT the boundary Hamiltonian is s=1/2 Heisenberg Similar results with other models

  31. PEPS EXAMPLES Kitaev toric code: Degenerate ground state. Gapped. Z Symmetry: 2 Ground state: PEPS with D=2 Boundary state σ ∂ = ⊕ P P A even odd Non-local operator Boundary Hamiltonian: trivial (up to the projector)

  32. PEPS EXAMPLES 2D RVB on a Kagome lattice: 1. single spin ½ at each edge Parent Hamiltonian acting on two stars PEPS with D=3 1 (2) su 2 ⊕ representation 0 Boundary Hamiltonian: t-J model 2. Three spins ½ at each edge: dimers are orthogonal (related to KR model)

  33. PEPS EXAMPLES 2D RVB on a Kagome lattice: 1. single spin ½ at each edge

  34. PEPS EXAMPLES Ψ θ 〉 | ( ) 2D: interpolation RVB-oRVB: Ψ 〉 = 〉 Ψ 〉 = 〉 | (0) | RVB | (1) | oRVB correlation function fidelity RVB and toric code seem to be in the same phase

  35. PEPS EXAMPLES ‚Uncle‘ Hamiltonians Fernandez, Schuch, Wolf, IC, Perez-Garcia, arXiv:1111.5817 An order parameter for gapped phases in 1D Haegeman, Perez-Garcia, IC, Schuch, arXiv:1201.4174 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ = 〈Ψ ⊗ ⊗ ⊗ ⊗ Ψ〉 N N N N N N | ( 1 ) (1 ) | o u u F u u 1 2 3 1 2 1 g g 13 h h Parent Hamiltonian for Laughlin spin state in a lattice poster Anne Nielse, IC, German Sierra, arXiv:1201.3096

  36. SUMMARY and CONCLUSIONS N 2 physically relevant CONCLUSION: Thermal equilibrium and local interaction spins can be efficiently described by PEPS Numerical algorithms New perspective HERE: Area law: bulk-boundary correspondence Boundary reflects properties of the bulk: criticality, topology, etc Finite correlation length implies locality of boundary Hamiltonian Locality + symmetries dictate entanglement spectrum Applicaton: contraction of PEPS is efficient

  37. TENSOR NETWORKS PROJECTED ENTANGLED-PAIR STATES Physical interpretation: ∑ = 〉〈 α β γ δ i | , , , | P A i αβγδ = ∑ Why do they provide efficient descriptions? H h , n m < > , n m M   β − ∏ h − β ⊗ ⊗ Ψ 〉 ϕ 〉 = ϕ 〉  n m , H N N   | lim | | e e M 0 β →∞  

  38. TOPOLOGICAL PHASES Symmetries: w g = † v v g g u g † w g Gauge symmetries: † w w g g = = † ⇔ v v v v g g g g w † w g g

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend