standard lattices of compatibly embedded finite fields
play

Standard lattices of compatibly embedded finite fields Luca De Feo, - PowerPoint PPT Presentation

Context Overview Standard lattices Standard lattices of compatibly embedded finite fields Luca De Feo, Hugues Randriam, douard Rousseau JNCF 2019 1 / 22 Context Overview Standard lattices C ONTENTS Context Overview Standard lattices


  1. Context Overview Standard lattices Standard lattices of compatibly embedded finite fields Luca De Feo, Hugues Randriam, Édouard Rousseau JNCF 2019 1 / 22

  2. Context Overview Standard lattices C ONTENTS Context Overview Standard lattices 2 / 22

  3. Context Overview Standard lattices C ONTEXT ◮ Use of Computer Algebra System (CAS) ◮ Use of many extensions of a prime finite field F p ◮ Computations in ¯ F p . F p 9 F p 25 F p 3 F p 5 F p ℓ 2 F p 4 F p 2 F p ℓ F p 3 / 22

  4. Context Overview Standard lattices E MBEDDINGS ◮ When l | m , we know F p l ֒ → F p m ◮ How to compute this embedding efficiently ? ◮ Naive algorithm: if F p l = F p [ x ] / ( f ( x )) , find a root ρ of f in x to ρ . Complexity strictly larger than ˜ O ( l 2 ) . F p m and map ¯ ◮ Lots of other solutions in the litterature: ◮ [Lenstra ’91] ◮ [Allombert ’02] ˜ O ( l 2 ) ◮ [Rains ’96] ◮ [Narayanan ’18] 4 / 22

  5. Context Overview Standard lattices C OMPATIBILITY ◮ K , L , M three finite fields with K ֒ → L ֒ → M → L , g : L ֒ → M , h : K ֒ → M embeddings ◮ f : K ֒ Compatibility: M g h L f K 5 / 22

  6. Context Overview Standard lattices C OMPATIBILITY ◮ K , L , M three finite fields with K ֒ → L ֒ → M → L , g : L ֒ → M , h : K ֒ → M embeddings ◮ f : K ֒ Compatibility: M g h L f K ? g ◦ f = h 5 / 22

  7. Context Overview Standard lattices E NSURING COMPATIBILITY : C ONWAY POLYNOMIALS Definition ( m -th Conway polynomials C m ) ◮ monic ◮ irreducible ◮ degree m ◮ primitive ( i.e. its roots generate F × p m ) pm − 1 � � pl − 1 = 0 ◮ norm-compatible ( i.e. C l = 0 mod C m if l | m ) X 6 / 22

  8. Context Overview Standard lattices E NSURING COMPATIBILITY : C ONWAY POLYNOMIALS Definition ( m -th Conway polynomials C m ) ◮ monic ◮ irreducible ◮ degree m ◮ primitive ( i.e. its roots generate F × p m ) pm − 1 � � pl − 1 = 0 ◮ norm-compatible ( i.e. C l = 0 mod C m if l | m ) X ◮ Standard polynomials 6 / 22

  9. Context Overview Standard lattices E NSURING COMPATIBILITY : C ONWAY POLYNOMIALS Definition ( m -th Conway polynomials C m ) ◮ monic ◮ irreducible ◮ degree m ◮ primitive ( i.e. its roots generate F × p m ) pm − 1 � � pl − 1 = 0 ◮ norm-compatible ( i.e. C l = 0 mod C m if l | m ) X ◮ Standard polynomials pm − 1 ◮ Compatible embeddings: ¯ X �→ ¯ pl − 1 ˜ O ( m 2 ) Y 6 / 22

  10. Context Overview Standard lattices E NSURING COMPATIBILITY : C ONWAY POLYNOMIALS Definition ( m -th Conway polynomials C m ) ◮ monic ◮ irreducible ◮ degree m ◮ primitive ( i.e. its roots generate F × p m ) pm − 1 � � pl − 1 = 0 ◮ norm-compatible ( i.e. C l = 0 mod C m if l | m ) X ◮ Standard polynomials pm − 1 ◮ Compatible embeddings: ¯ X �→ ¯ pl − 1 ˜ O ( m 2 ) Y ◮ Hard to compute (exponential complexity) 6 / 22

  11. Context Overview Standard lattices E NSURING COMPATIBILITY : B OSMA , C ANNON AND S TEEL ◮ Framework used in MAGMA ◮ Based on the naive embedding algorithm ◮ Constraints of the embedding imply that adding a new embedding can be expensive M L . . . K 1 K 2 K r 7 / 22

  12. Context Overview Standard lattices E NSURING COMPATIBILITY : B OSMA , C ANNON AND S TEEL ◮ Framework used in MAGMA ◮ Based on the naive embedding algorithm ◮ Constraints of the embedding imply that adding a new embedding can be expensive ◮ Inefficient as the number of extensions grows M L . . . K 1 K 2 K r 7 / 22

  13. Context Overview Standard lattices E NSURING COMPATIBILITY : B OSMA , C ANNON AND S TEEL ◮ Framework used in MAGMA ◮ Based on the naive embedding algorithm ◮ Constraints of the embedding imply that adding a new embedding can be expensive ◮ Inefficient as the number of extensions grows M L . . . K 1 K 2 K r ◮ Non standard polynomials 7 / 22

  14. Context Overview Standard lattices I DEAS ◮ Plugging Allombert’s embedding algorithm in Bosma, Cannon, and Steel ◮ Generalizing Bosma, Cannon, and Steel ◮ Generalizing Conway polynomials Goal: bring the best of both worlds 8 / 22

  15. Context Overview Standard lattices A LLOMBERT ’ S EMBEDDING ALGORITHM I ◮ Based on an extension of Kummer theory ◮ For p ∤ l , we work in A l = F p l ⊗ F p ( ζ l ) , and study ( σ ⊗ 1 )( x ) = ( 1 ⊗ ζ l ) x (H90) ◮ Solutions of (H90) form a F p ( ζ l ) -vector space of dimension 1 ◮ α l = � a − 1 j = 0 x j ⊗ ζ j l solution of (H90), then x 0 generates F p l . ◮ Let ⌊ α l ⌋ = x 0 the projection on the first coordinate ◮ ( α l ) l = 1 ⊗ c ∈ 1 ⊗ F p ( ζ l ) 9 / 22

  16. Context Overview Standard lattices A LLOMBERT ’ S EMBEDDING ALGORITHM II Input: F p l , F p m , with l | m , ζ l and ζ m with ( ζ m ) m / l = ζ l Output: s ∈ F p l , t ∈ F p m , such that s �→ t defines an embedding φ : F p l → F p m 1. Construct A l and A m 2. Find α l ∈ A l and α m ∈ A m , nonzero solutions of (H90) for the roots ζ l and ζ m 3. Compute ( α l ) l = 1 ⊗ c l and ( α m ) m = 1 ⊗ c m 4. Compute κ l , m a l -th root of c l / c m 5. Return ⌊ α l ⌋ and � ( 1 ⊗ κ l , m )( α m ) m / l � 10 / 22

  17. Context Overview Standard lattices A LLOMBERT AND B OSMA , C ANON , AND S TEEL ◮ Need to store one constant κ l , m for each pair ( F p l , F p m ) ◮ The constant κ l , m depends on α l and α m We would like to: ◮ get rid of the constants κ l , m ( e.g. have κ l , m = 1) ◮ equivalently, get "standard" solutions of (H90) ◮ select solutions α l , α m that always define the same embedding ◮ such that the constants κ l , m are well understood ( e.g. κ l , m = 1) 11 / 22

  18. Context Overview Standard lattices T HE CASE l | m | p − 1 Let l | m | p − 1 ◮ A l = F p l ⊗ F p ∼ = F p l ◮ A m = F p m ◮ σ ( α l ) = ζ l α l and σ ( α m ) = ζ m α m ◮ ( α l ) l = c l ∈ F p and ( α m ) m = c m ∈ F p ◮ κ l , m = � l c l / c m ◮ κ l , m = 1 implies c l = c m In particular, for m = p − 1 we obtain σ ( α p − 1 ) = ( α p − 1 ) p = ζ p − 1 α p − 1 ◮ ( α p − 1 ) p − 1 = c p − 1 = ζ p − 1 ◮ this implies ∀ l | p − 1 , c l = ζ p − 1 12 / 22

  19. Context Overview Standard lattices C OMPLETE ALGEBRA Let A l = F p l ⊗ F p ( ζ l ) Definition (degree, level) ◮ degree of A l : l ◮ level of A l : a = [ F p ( ζ l ) : F p ] Idea: consider the largest algebra for a given level Definition (Complete algebra of level a ) ◮ A p a − 1 = F p pa − 1 ⊗ F p ( ζ p a − 1 ) ∼ = F p pa − 1 ⊗ F p a 13 / 22

  20. Context Overview Standard lattices S TANDARD SOLUTIONS How to define standard solutions of (H90)? Lemma If α p a − 1 is a solution of (H90) for ζ p a − 1 , then c p a − 1 = ( ζ p a − 1 ) a . Definition (Standard solution) Let A l an algebra of level a , α l ∈ A l a solution of (H90) for pa − 1 l , α l is standard if c l = ( ζ p a − 1 ) a ζ l = ( ζ p a − 1 ) Definition (Standard polynomial) All standard solutions α l define the same irreducible polynomial of degree l , we call it the standard polynomial of degree l . 14 / 22

  21. Context Overview Standard lattices S TANDARD EMBEDDINGS ( SAME LEVEL ) Let l | m and A l , A m algebras with the same level a , ζ l = ( ζ m ) m / l ◮ α l and α m standard solutions of (H90) for ζ l and ζ m 15 / 22

  22. Context Overview Standard lattices S TANDARD EMBEDDINGS ( SAME LEVEL ) Let l | m and A l , A m algebras with the same level a , ζ l = ( ζ m ) m / l ◮ α l and α m standard solutions of (H90) for ζ l and ζ m ◮ c l = c m = ( ζ p a − 1 ) a 15 / 22

  23. Context Overview Standard lattices S TANDARD EMBEDDINGS ( SAME LEVEL ) Let l | m and A l , A m algebras with the same level a , ζ l = ( ζ m ) m / l ◮ α l and α m standard solutions of (H90) for ζ l and ζ m ◮ c l = c m = ( ζ p a − 1 ) a ◮ κ l , m = 1 15 / 22

  24. Context Overview Standard lattices S TANDARD EMBEDDINGS ( SAME LEVEL ) Let l | m and A l , A m algebras with the same level a , ζ l = ( ζ m ) m / l ◮ α l and α m standard solutions of (H90) for ζ l and ζ m ◮ c l = c m = ( ζ p a − 1 ) a ◮ κ l , m = 1 ◮ The embedding ⌊ α l ⌋ �→ � ( α m ) m / l � is standard too (only depends on ζ p a − 1 ). 15 / 22

  25. Context Overview Standard lattices S TANDARD EMBEDDINGS ( DIFFERENT LEVEL ) Let l | m and A l of level a , A m of level b , a � = b . ◮ Natural norm-compatibility condition, we want: pb − 1 pa − 1 = N ( ζ p b − 1 ) = φ F pa ֒ ( ζ p b − 1 ) → F pb ( ζ p a − 1 ) 16 / 22

  26. Context Overview Standard lattices S TANDARD EMBEDDINGS ( DIFFERENT LEVEL ) Let l | m and A l of level a , A m of level b , a � = b . ◮ Natural norm-compatibility condition, we want: pb − 1 pa − 1 = N ( ζ p b − 1 ) = φ F pa ֒ ( ζ p b − 1 ) → F pb ( ζ p a − 1 ) We let N be the “norm-like” map N ( α ) = � b / a − 1 ( 1 ⊗ σ aj )( α ) j = 0 16 / 22

  27. Context Overview Standard lattices S TANDARD EMBEDDINGS ( DIFFERENT LEVEL ) Let l | m and A l of level a , A m of level b , a � = b . ◮ Natural norm-compatibility condition, we want: pb − 1 pa − 1 = N ( ζ p b − 1 ) = φ F pa ֒ ( ζ p b − 1 ) → F pb ( ζ p a − 1 ) We let N be the “norm-like” map N ( α ) = � b / a − 1 ( 1 ⊗ σ aj )( α ) j = 0 ◮ We obtain N ( α p b − 1 ) = Φ A pa − 1 ֒ → A pb − 1 ( α p a − 1 ) 16 / 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend