conformal field theory on the lattice from discrete
play

Conformal field theory on the lattice: from discrete complex - PowerPoint PPT Presentation

Conformal field theory on the lattice: from discrete complex analysis to Virasoro algebra Kalle Kytl tt Department of Mathematics and Systems Analysis, Aalto University joint work


  1. Conformal field theory on the lattice: from discrete complex analysis to Virasoro algebra Kalle Kytölä ❦❛❧❧❡✳❦②t♦❧❛❅❛❛❧t♦✳❢✐ Department of Mathematics and Systems Analysis, Aalto University joint work with Clément Hongler (EPFL, Lausanne) Fredrik Viklund (KTH, Stockholm) June 22, 2018 — KIAS, "Random Conformal Geometry and Related Fields"

  2. Outline 1. Introduction: Conformal Field Theory and Virasoro algebra 2. Main results: local fields of probabilistic lattice models form Virasoro representations ◮ discrete Gaussian free field ◮ Ising model 3. An algebraic theme and variations (Sugawara construction) 4. Proof steps (discrete complex analysis) Conformal Field Theory on the lattice Kalle Kytölä

  3. 1. I NTRODUCTION Conformal Field Theory on the lattice I. Introduction Kalle Kytölä

  4. Intro: Two-dimensional statistical physics (uniform spanning tree) (Ising model) (percolation) etc. etc. Conformal Field Theory on the lattice I. Introduction Kalle Kytölä

  5. Intro: Conformally invariant scaling limits Conventional wisdom: Any interesting scaling limit of any two-dimensional random lattice model is conformally invariant: ◮ interfaces − → SLE-type random curves ◮ correlations − → CFT correlation functions Remarks: ◮ SLE: Schramm-Loewner Evolution * [cf. the other talks] ◮ CFT: Conformal Field Theory * powerful algebraic structures (Virasoro algebra, modular invariance, quantum groups, . . . ) * exact solvability (critical exponents, PDEs for correlation fns, . . . ) * mysteries — what is CFT, really? ◮ This talk: concrete probabilistic role for Virasoro algebra Conformal Field Theory on the lattice I. Introduction Kalle Kytölä

  6. Intro: The role of Virasoro algebra Virasoro algebra: ∞ -dim. Lie algebra, basis L n ( n ∈ Z ) and C [ L n , L m ] = ( n − m ) L n + m + n 3 − n 12 δ n + m , 0 C [ C , L n ] = 0 ( C a central element ) Role of Virasoro algebra in CFT? ◮ stress tensor T : first order response to variation of metric (in particular “infinitesimal conformal transformations”) ◮ Laurent modes of stress tensor T ( z ) = � n ∈ Z L n z − 2 − n ◮ C acts as c × id, with c ∈ R the “central charge” of the CFT ◮ action on local fields (effect of variation of metric on correlations) ◮ local fields form a Virasoro representation ◮ highest weights of the representation � critical exponents ◮ degenerate representations � PDEs for correlations (exact solvability & classification) Conformal Field Theory on the lattice I. Introduction Kalle Kytölä

  7. II. L OCAL FIELDS IN LATTICE MODELS Conformal Field Theory on the lattice II. Local fields in lattice models Kalle Kytölä

  8. The critical Ising model on Z 2 ◮ domain Ω � C open, 1-connected ◮ δ > 0 small mesh size ◮ lattice approximation Ω δ ⊂ C δ := δ Z 2 Ising model : random spin configuration � � z ∈ C δ ∈ { + 1 , − 1 } C δ σ = σ z � C δ \ Ω δ ≡ + 1 (plus-boundary conditions) σ � � � � � P { σ } ∝ exp − β E ( σ ) (Boltzmann-Gibbs) � E ( σ ) = − σ z σ w (energy) � z − w � = δ � √ β = β c = 1 � 2 log 2 + 1 (critical point) Conformal Field Theory on the lattice II. Local fields in lattice models Kalle Kytölä

  9. Celebrated scaling limits of Ising correlations � � ℑ m ( z ) > 0 } conformal map φ : Ω → H = { z ∈ C Thm [Chelkak & Hongler & Izyurov, Ann. Math. 2015] k 1 � � � lim δ k / 8 E σ z j δ → 0 j = 1 k | φ ′ ( z j ) | 1 / 8 × C k � � � = φ ( z 1 ) , . . . , φ ( z k ) j = 1 ↓ Thm [Hongler & Smirnov, Acta Math. 2013] [Hongler, 2011] � m �� 1 − σ z j σ z j + δ + 1 � � lim δ m E √ z 1 δ → 0 2 z 2 j = 1 m z 3 � | φ ′ ( z j ) | × E m � � = φ ( z 1 ) , . . . , φ ( z m ) j = 1 z 4 + [Gheissari & Hongler & Park, 2013 — Sung Chul’s talk] + [Chelkak & Hongler & Izyurov, 2018+ — Kostya’s talk] Conformal Field Theory on the lattice II. Local fields in lattice models Kalle Kytölä

  10. Local fields of the Ising model � � σ = σ z Ising Local fields F ( z ) of Ising z ∈ Ω δ ◮ V ⊂ Z 2 finite subset ◮ P : { + 1 , − 1 } V → C a function ◮ F ( z ) = P � ( σ z + δ x ) x ∈ V � � F space of local fields Null fields: “zero inside correlations” ◮ F ( z ) null field: � � F ( z ) � n ∃ R > 0 s.t. E j = 1 σ w j = 0 Examples of local fields: whenever � z − w j � 1 > R δ ∀ j * F ( z ) = σ z (spin) � N ⊂ F space of null fields * F ( z ) = − σ z σ z + δ (energy) F / N — equivalence classes of local fields, “same correlations” Conformal Field Theory on the lattice II. Local fields in lattice models Kalle Kytölä

  11. Main result 1: Virasoro action on Ising local fields Theorem (Hongler & K. & Viklund, 2017) The space F / N of correlation equivalence classes of local fields of the critical Ising model on Z 2 forms a representation of the Virasoro algebra with central charge c = 1 2 . Conformal Field Theory on the lattice II. Local fields in lattice models Kalle Kytölä

  12. Discrete Gaussian Free Field on Z 2 Discrete Gaussian Free Field (dGFF): � � Φ = Φ( z ) z ∈ Ω δ Domain and discretization: ◮ Ω � C open, simply connected ◮ lattice approximation: Ω δ ⊂ C δ := δ Z 2 ◮ centered Gaussian field on vertices of discrete domain Ω δ 1 � � p ( φ ) ∝ exp − 16 π E ( φ ) probability density � � 2 � φ ( z ) − φ ( w ) E ( φ ) = “Dirichlet energy” � z − w � = δ Conformal Field Theory on the lattice II. Local fields in lattice models Kalle Kytölä

  13. Local fields of the dGFF � � Local fields F ( z ) of dGFF Φ = Φ( z ) dGFF z ∈ Ω δ ◮ V ⊂ Z 2 finite subset ◮ P : R V → C polynomial function Examples of local fields: * F ( z ) = Φ( z ) ◮ F ( z ) = P � (Φ( z + δ x )) x ∈ V � * F ( z ) = 1 2 Φ( z + δ ) − 1 2 Φ( z − δ ) � F space of local fields * F ( z ) = 361 Φ( z ) 3 Null fields: “zero inside correlations” ◮ F ( z ) null field: � � F ( z ) � n ∃ R > 0 s.t. E j = 1 Φ( w j ) = 0 whenever � z − w j � 1 > R δ ∀ j � N ⊂ F space of null fields F / N — equivalence classes of local fields, “same correlations” Conformal Field Theory on the lattice II. Local fields in lattice models Kalle Kytölä

  14. Main result 2: Virasoro action on dGFF local fields Theorem (Hongler & K. & Viklund, 2017) The space F / N of correlation equivalence classes of local fields of the discrete Gaussian free field on Z 2 forms a representation of the Virasoro algebra with central charge c = 1. Conformal Field Theory on the lattice II. Local fields in lattice models Kalle Kytölä

  15. III. A N ALGEBRAIC THEME AND VARIATIONS (S UGAWARA CONSTRUCTION ) Conformal Field Theory on the lattice III. Algebraic theme and variations Kalle Kytölä

  16. Bosonic Sugawara construction commutator [ A , B ] := A ◦ B − B ◦ A Proposition (bosonic Sugawara construction) ◮ V vector space and a j : V → V linear for each j ∈ Z Suppose: ◮ ∀ v ∈ V ∃ N ∈ Z : j ≥ N = ⇒ a j v = 0 ◮ [ a i , a j ] = i δ i + j , 0 id V � � L n := 1 a j ◦ a n − j + 1 a n − j ◦ a j for n ∈ Z Define: 2 2 j ≥ 0 j < 0 ◮ L n : V → V is well defined Then: ◮ [ L n , L m ] = ( n − m ) L n + m + n 3 − n δ n + m , 0 id V 12 ∴ V Virasoro representation, central charge c = 1 Conformal Field Theory on the lattice III. Algebraic theme and variations Kalle Kytölä

  17. Fermionic Sugawara construction 1 commutator [ A , B ] := A ◦ B − B ◦ A anticommutator [ A , B ] + := A ◦ B + B ◦ A Proposition (fermionic Sugawara, Neveu-Schwarz sector) ◮ V vector space, b k : V → V linear for each k ∈ Z + 1 2 Suppose: ◮ ∀ v ∈ V ∃ N ∈ Z k ≥ N = ⇒ b k v = 0 : ◮ [ b k , b ℓ ] + = δ k + ℓ, 0 id V � 1 � � 1 � � � L n := 1 b n − k b k − 1 2 + k 2 + k ( n ∈ Z ) b k b n − k Def.: 2 2 k > 0 k < 0 ◮ L n : V → V is well defined Then: ◮ [ L n , L m ] = ( n − m ) L n + m + n 3 − n δ n + m , 0 id V 24 V Virasoro representation, central charge c = 1 ∴ 2 Conformal Field Theory on the lattice III. Algebraic theme and variations Kalle Kytölä

  18. Fermionic Sugawara construction 2 commutator [ A , B ] := A ◦ B − B ◦ A anticommutator [ A , B ] + := A ◦ B + B ◦ A Proposition (fermionic Sugawara, Ramond sector) ◮ V vector space, b j : V → V linear for each j ∈ Z Suppose: ◮ ∀ v ∈ V ∃ N ∈ Z : j ≥ N = ⇒ b j v = 0 ◮ [ b i , b j ] + = δ i + j , 0 id V � 1 � 1 L n := 1 � b n − j b j − 1 � � � ( n ∈ Z \ { 0 } ) 2 + j 2 + j b j b n − j 2 2 j ≥ 0 j < 0 Def.: L 0 := 1 j b − j b j + 1 � 16 id V 2 j > 0 ◮ L n : V → V is well defined Then: ◮ [ L n , L m ] = ( n − m ) L n + m + n 3 − n δ n + m , 0 id V 24 V Virasoro representation, central charge c = 1 ∴ 2 Conformal Field Theory on the lattice III. Algebraic theme and variations Kalle Kytölä

  19. IV. P ROOF STEPS ( DISCRETE COMPLEX ANALYSIS ) Conformal Field Theory on the lattice IV. Proof steps: discrete complex analysis Kalle Kytölä

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend