boundary element domain decomposition methods challenges
play

Boundary Element Domain Decomposition Methods Challenges and - PowerPoint PPT Presentation

Institut f ur Numerische Mathematik Boundary Element Domain Decomposition Methods Challenges and Applications Olaf Steinbach Institut f ur Numerische Mathematik Technische Universit at Graz SFB 404 Mehrfeldprobleme in der


  1. Institut f¨ ur Numerische Mathematik Boundary Element Domain Decomposition Methods Challenges and Applications Olaf Steinbach Institut f¨ ur Numerische Mathematik Technische Universit¨ at Graz SFB 404 Mehrfeldprobleme in der Kontinuumsmechanik, Stuttgart in collaboration with U. Langer, G. Of, W. L. Wendland, W. Zulehner O. Steinbach DD 17, 6.7.2006 1 / 23

  2. Institut f¨ ur Numerische Mathematik ◮ Coupling of Finite and Boundary Element Methods [Bettess, Kelly, Zienkiewicz ’77, ’79; Brezzi, Johnson, Nedelec ’78; Brezzi, Johnson ’79; Johnson, Nedelec ’80; . . . ] O. Steinbach DD 17, 6.7.2006 2 / 23

  3. Institut f¨ ur Numerische Mathematik ◮ Coupling of Finite and Boundary Element Methods [Bettess, Kelly, Zienkiewicz ’77, ’79; Brezzi, Johnson, Nedelec ’78; Brezzi, Johnson ’79; Johnson, Nedelec ’80; . . . ] ◮ Symmetric Coupling of Finite and Boundary Element Methods [Costabel ’87; Langer ’94; . . . ] O. Steinbach DD 17, 6.7.2006 2 / 23

  4. Institut f¨ ur Numerische Mathematik ◮ Coupling of Finite and Boundary Element Methods [Bettess, Kelly, Zienkiewicz ’77, ’79; Brezzi, Johnson, Nedelec ’78; Brezzi, Johnson ’79; Johnson, Nedelec ’80; . . . ] ◮ Symmetric Coupling of Finite and Boundary Element Methods [Costabel ’87; Langer ’94; . . . ] ◮ Symmetric Boundary Element Domain Decomposition Methods [Hsiao, Wendland ’90; Carstensen, Kuhn, Langer ’98; OS ’96; . . . ] O. Steinbach DD 17, 6.7.2006 2 / 23

  5. Institut f¨ ur Numerische Mathematik ◮ Coupling of Finite and Boundary Element Methods [Bettess, Kelly, Zienkiewicz ’77, ’79; Brezzi, Johnson, Nedelec ’78; Brezzi, Johnson ’79; Johnson, Nedelec ’80; . . . ] ◮ Symmetric Coupling of Finite and Boundary Element Methods [Costabel ’87; Langer ’94; . . . ] ◮ Symmetric Boundary Element Domain Decomposition Methods [Hsiao, Wendland ’90; Carstensen, Kuhn, Langer ’98; OS ’96; . . . ] ◮ Steklov–Poincar´ e Operator Domain Decomposition Methods [Agoshkov, Lebedev ’85; Hsiao, Wendland ’92; Hsiao, Schnack, Wendland ’99, ’00; OS ’03; . . . ] O. Steinbach DD 17, 6.7.2006 2 / 23

  6. Institut f¨ ur Numerische Mathematik ◮ Coupling of Finite and Boundary Element Methods [Bettess, Kelly, Zienkiewicz ’77, ’79; Brezzi, Johnson, Nedelec ’78; Brezzi, Johnson ’79; Johnson, Nedelec ’80; . . . ] ◮ Symmetric Coupling of Finite and Boundary Element Methods [Costabel ’87; Langer ’94; . . . ] ◮ Symmetric Boundary Element Domain Decomposition Methods [Hsiao, Wendland ’90; Carstensen, Kuhn, Langer ’98; OS ’96; . . . ] ◮ Steklov–Poincar´ e Operator Domain Decomposition Methods [Agoshkov, Lebedev ’85; Hsiao, Wendland ’92; Hsiao, Schnack, Wendland ’99, ’00; OS ’03; . . . ] ◮ Hybrid Domain Decomposition Methods (Mortar, Three Field, FETI) [Agouzal, Thomas ’85; Bernardi, Maday, Patera ’85; Wohlmuth ’01; Brezzi, Marini ’04; Farhat, Roux ’91; Klawonn, Widlund ’01; Toselli, Widlund ’05; . . . ] O. Steinbach DD 17, 6.7.2006 2 / 23

  7. Institut f¨ ur Numerische Mathematik ◮ Coupling of Finite and Boundary Element Methods [Bettess, Kelly, Zienkiewicz ’77, ’79; Brezzi, Johnson, Nedelec ’78; Brezzi, Johnson ’79; Johnson, Nedelec ’80; . . . ] ◮ Symmetric Coupling of Finite and Boundary Element Methods [Costabel ’87; Langer ’94; . . . ] ◮ Symmetric Boundary Element Domain Decomposition Methods [Hsiao, Wendland ’90; Carstensen, Kuhn, Langer ’98; OS ’96; . . . ] ◮ Steklov–Poincar´ e Operator Domain Decomposition Methods [Agoshkov, Lebedev ’85; Hsiao, Wendland ’92; Hsiao, Schnack, Wendland ’99, ’00; OS ’03; . . . ] ◮ Hybrid Domain Decomposition Methods (Mortar, Three Field, FETI) [Agouzal, Thomas ’85; Bernardi, Maday, Patera ’85; Wohlmuth ’01; Brezzi, Marini ’04; Farhat, Roux ’91; Klawonn, Widlund ’01; Toselli, Widlund ’05; . . . ] ◮ Sparse Boundary Element Tearing and Interconnecting Methods [Langer, OS ’03; Langer, Of, OS, Zulehner ’05; Of ’05] O. Steinbach DD 17, 6.7.2006 2 / 23

  8. Institut f¨ ur Numerische Mathematik Model Problem − div[ α ( x ) ∇ u ( x )] = f ( x ) for x ∈ Ω , for x ∈ Γ = ∂ Ω u ( x ) = g ( x ) Nonoverlapping Domain Decomposition p � Ω = Ω i , Ω i ∩ Ω j = ∅ for i � = j , Γ i = ∂ Ω i i =1 O. Steinbach DD 17, 6.7.2006 3 / 23

  9. Institut f¨ ur Numerische Mathematik Model Problem − div[ α ( x ) ∇ u ( x )] = f ( x ) for x ∈ Ω , for x ∈ Γ = ∂ Ω u ( x ) = g ( x ) Nonoverlapping Domain Decomposition p � Ω = Ω i , Ω i ∩ Ω j = ∅ for i � = j , Γ i = ∂ Ω i i =1 Local Boundary Value Problems − α i ∆ u i ( x ) = f i ( x ) for x ∈ Ω i , for x ∈ Γ i ∩ Γ u i ( x ) = g ( x ) Transmission Boundary Conditions ∂ ∂ u i ( x ) = u j ( x ) , α i u i ( x ) + α j u j ( x ) = 0 for x ∈ Γ ij = Γ i ∩ Γ j ∂ n i ∂ n j O. Steinbach DD 17, 6.7.2006 3 / 23

  10. Institut f¨ ur Numerische Mathematik Local Dirichlet Boundary Value Problem − α i ∆ u i ( x ) = f i ( x ) for x ∈ Ω i , u i ( x ) = g i ( x ) for x ∈ Γ i = ∂ Ω i O. Steinbach DD 17, 6.7.2006 4 / 23

  11. Institut f¨ ur Numerische Mathematik Local Dirichlet Boundary Value Problem − α i ∆ u i ( x ) = f i ( x ) for x ∈ Ω i , u i ( x ) = g i ( x ) for x ∈ Γ i = ∂ Ω i Representation Formula for x ∈ Ω i � � � g i ( y ) ∂ U ∗ ( x , y ) ds y + 1 U ∗ ( x , y ) t i ( y ) ds y − U ∗ ( x , y ) f i ( y ) dy u i ( x ) = ∂ n y α i Γ i Γ i Ω i Fundamental Solution 1 1 ∂ U ∗ ( x , y ) = | x − y | , t i ( y ) = u i ( y ) , y ∈ Γ i 4 π ∂ n y O. Steinbach DD 17, 6.7.2006 4 / 23

  12. Institut f¨ ur Numerische Mathematik Local Dirichlet Boundary Value Problem − α i ∆ u i ( x ) = f i ( x ) for x ∈ Ω i , u i ( x ) = g i ( x ) for x ∈ Γ i = ∂ Ω i Representation Formula for x ∈ Ω i � � � g i ( y ) ∂ U ∗ ( x , y ) ds y + 1 U ∗ ( x , y ) t i ( y ) ds y − U ∗ ( x , y ) f i ( y ) dy u i ( x ) = ∂ n y α i Γ i Γ i Ω i Fundamental Solution 1 1 ∂ U ∗ ( x , y ) = | x − y | , t i ( y ) = u i ( y ) , y ∈ Γ i 4 π ∂ n y Boundary Integral Equation for x ∈ Γ i � � � 1 | x − y | ds y = 1 t i ( y ) 2 g i ( x )+ 1 ∂ | x − y | ds y − 1 1 1 f ( y ) g i ( y ) | x − y | dy 4 π 4 π ∂ n i ( y ) α i 4 π Γ i Γ i Ω i O. Steinbach DD 17, 6.7.2006 4 / 23

  13. Institut f¨ ur Numerische Mathematik Boundary Integral Equation for x ∈ Γ i ( V i t i )( x ) = 1 2 g i ( x ) + ( K i g i )( x ) − 1 ( N 0 , i f i )( x ) α i O. Steinbach DD 17, 6.7.2006 5 / 23

  14. Institut f¨ ur Numerische Mathematik Boundary Integral Equation for x ∈ Γ i ( V i t i )( x ) = 1 2 g i ( x ) + ( K i g i )( x ) − 1 ( N 0 , i f i )( x ) α i Single Layer Potential V i : H − 1 / 2 (Γ i ) → H 1 / 2 (Γ i ) , � V i w i , w i � Γ i ≥ c V i 1 � w i � 2 H − 1 / 2 (Γ i ) , n = 2 : diam Ω i < 1 O. Steinbach DD 17, 6.7.2006 5 / 23

  15. Institut f¨ ur Numerische Mathematik Boundary Integral Equation for x ∈ Γ i ( V i t i )( x ) = 1 2 g i ( x ) + ( K i g i )( x ) − 1 ( N 0 , i f i )( x ) α i Single Layer Potential V i : H − 1 / 2 (Γ i ) → H 1 / 2 (Γ i ) , � V i w i , w i � Γ i ≥ c V i 1 � w i � 2 H − 1 / 2 (Γ i ) , n = 2 : diam Ω i < 1 Dirichlet to Neumann Map (1 2 I + K i ) g i − 1 t i = V − 1 V − 1 N 0 , i f i i i α i O. Steinbach DD 17, 6.7.2006 5 / 23

  16. Institut f¨ ur Numerische Mathematik Boundary Integral Equation for x ∈ Γ i ( V i t i )( x ) = 1 2 g i ( x ) + ( K i g i )( x ) − 1 ( N 0 , i f i )( x ) α i Single Layer Potential V i : H − 1 / 2 (Γ i ) → H 1 / 2 (Γ i ) , � V i w i , w i � Γ i ≥ c V i 1 � w i � 2 H − 1 / 2 (Γ i ) , n = 2 : diam Ω i < 1 Dirichlet to Neumann Map (1 2 I + K i ) g i − 1 t i = V − 1 V − 1 N 0 , i f i i i α i Steklov–Poincar´ e Operator (1 S i = V − 1 2 I + K i ) i O. Steinbach DD 17, 6.7.2006 5 / 23

  17. Institut f¨ ur Numerische Mathematik Representation Formula for x ∈ Ω i � � � g i ( y ) ∂ U ∗ ( x , y ) ds y + 1 U ∗ ( x , y ) t i ( y ) ds y − U ∗ ( x , y ) f i ( y ) dy u i ( x ) = ∂ n y α i Γ i Γ i Ω i O. Steinbach DD 17, 6.7.2006 6 / 23

  18. Institut f¨ ur Numerische Mathematik Representation Formula for x ∈ Ω i � � � g i ( y ) ∂ U ∗ ( x , y ) ds y + 1 U ∗ ( x , y ) t i ( y ) ds y − U ∗ ( x , y ) f i ( y ) dy u i ( x ) = ∂ n y α i Γ i Γ i Ω i Computation of the Normal Derivative � � 1 ∂ ∂ g i ( y ) ∂ U ∗ ( x , y ) t i ( y ) ds y − U ∗ ( x , y ) ds y t i ( x ) = 2 t i ( x ) + ∂ n x ∂ n x ∂ n y Γ i Γ i � + 1 ∂ U ∗ ( x , y ) f i ( y ) dy α i ∂ n x Ω i O. Steinbach DD 17, 6.7.2006 6 / 23

  19. Institut f¨ ur Numerische Mathematik Representation Formula for x ∈ Ω i � � � g i ( y ) ∂ U ∗ ( x , y ) ds y + 1 U ∗ ( x , y ) t i ( y ) ds y − U ∗ ( x , y ) f i ( y ) dy u i ( x ) = ∂ n y α i Γ i Γ i Ω i Computation of the Normal Derivative � � 1 ∂ ∂ g i ( y ) ∂ U ∗ ( x , y ) t i ( y ) ds y − U ∗ ( x , y ) ds y t i ( x ) = 2 t i ( x ) + ∂ n x ∂ n x ∂ n y Γ i Γ i � + 1 ∂ U ∗ ( x , y ) f i ( y ) dy α i ∂ n x Ω i Hypersingular Boundary Integral Equation for x ∈ Γ i t i ( x ) = 1 i t i )( x ) + ( D i g i )( x ) + 1 2 t i ( x ) + ( K ′ ( N 1 , i f i )( x ) α i O. Steinbach DD 17, 6.7.2006 6 / 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend