space time trefftz discontinuous galerkin methods for
play

Spacetime Trefftz discontinuous Galerkin methods for wave problems - PowerPoint PPT Presentation

S PACE T IME M ETHODS FOR PDE S , 711 N OVEMBER 2016, R ICAM , L INZ Spacetime Trefftz discontinuous Galerkin methods for wave problems Andrea Moiola D EPARTMENT OF M ATHEMATICS AND S TATISTICS , U NIVERSITY OF R EADING Joint work with


  1. S PACE –T IME M ETHODS FOR PDE S , 7–11 N OVEMBER 2016, R ICAM , L INZ Space–time Trefftz discontinuous Galerkin methods for wave problems Andrea Moiola D EPARTMENT OF M ATHEMATICS AND S TATISTICS , U NIVERSITY OF R EADING Joint work with I. Perugia

  2. Minimal Trefftz example: Laplace equation Imagine you want to approximate the solution u of Laplace eq. in Ω ⊂ R n , ( +any BCs on ∂ Ω) , ∆ u = 0 using a standard discontinuous Galerkin (DG) method. You seek the approximate solution in � � v hp ∈ L 2 (Ω) : v hp | K ∈ P p ( K ) ∀ K ∈ T h where P p ( K ) is the space of polynomials of degree at most p on the element K of a mesh T h . Why not use only (piecewise) harmonic polynomials � � v hp ∈ L 2 (Ω) : v hp | K ∈ P p ( K ) , ∆ v hp | K = 0 ∀ K ∈ T h ? Comparable accuracy for O ( p n − 1 · # el ) vs O ( p n · # el ) DOFs. (E.g., n =2, p =10: 21 vs 66 DOFs/el.; p =20: 41 vs 231 DOFs/el.) 2

  3. Trefftz methods Consider a linear PDE L u = 0 . Trefftz methods are finite element schemes such that test and trial functions are solutions of the PDE in each element K of the mesh T h . E.g.: piecewise harmonic polynomials if L u = ∆ u . Our main interest is in wave propagation, in: ◮ Frequency domain, Helmholtz eq. − ∆ u − k 2 u = 0 lot of work done, h / p / hp -theory, Maxwell, elasticity. . . (recent survey: Hiptmair, AM, Perugia, arXiv:1506.04521) c 2 ∂ 2 ◮ Time domain, wave equation − ∆ U + 1 ∂ t 2 U = 0 Trefftz methods are in space–time, as opposed to semi-discretisation + time-stepping. 3

  4. Trefftz methods for wave equation Why Trefftz methods? Comparing with standard DG, ◮ better accuracy per DOFs and higher convergence orders; ◮ PDE properties “known” by discrete space, e.g. dispersion; ◮ lower dimensional quadrature needed; ◮ simpler and more flexible, adapted bases and adaptivity. . . No typical drawbacks of time-harmonic Trefftz (ill-cond., quad.). Existing works on Trefftz for time-domain wave equation: ◮ M ACIA ¸ G , S OKALA , W AUER 2005–2011, L IU , K UO 2016, single element Trefftz; ◮ P ETERSEN , F ARHAT , T EZAUR , W ANG 2009&2014, DG with Lagrange multipliers; ◮ E GGER , K RETZSCHMAR , S CHNEPP , T SUKERMAN , W EILAND 3 × 2014–2015, Maxwell equations; K RETZSCHMAR , M OIOLA , P ERUGIA , S CHNEPP 2015, analysis; M OIOLA , P ERUGIA , arXiv:1610.08002. ◮ B ANJAI , G EORGOULIS , L IJOKA 2016, interior penalty-DG (see talk on Wednesday). 4

  5. Simplest Trefftz space: Trefftz polynomials in K ⊂ R n + 1 ( c const). − ∆ U + c − 2 U ′′ = 0 Consider wave eq. Choose Trefftz space of polynomials of deg. ≤ p on element K : � � v ∈ P p ( K ) , − ∆ v + c − 2 v ′′ = 0 U p ( K ) : = . ◮ Basis functions are easily constructed: b j ,ℓ ( x , t ) = ( d j ,ℓ · x − ct ) j for suitable propagation directions d j ,ℓ ( | d j ,ℓ | = 1 ). ◮ Orders of approximation in h are for free, because Taylor polynomial of (smooth) U belongs to U p ( K ) . � � � � U p ( K ) = O p →∞ ( p n ) ≪ dim P p ( K ) = O p →∞ ( p n + 1 ) . ◮ dim 5

  6. Part II Trefftz-DG for acoustic wave equations

  7. Initial–boundary value problem First order initial–boundary value problem (Dirichlet): find ( v , σ )  ∇ v + ∂ σ  in Q = Ω × ( 0 , T ) ⊂ R n + 1 , n ∈ N , ∂ t = 0       ∇ · σ + 1 ∂ v in Q , ∂ t = 0 c 2    on Ω ,  v ( · , 0 ) = v 0 , σ ( · , 0 ) = σ 0    on ∂ Ω × ( 0 , T ) . v ( x , · ) = g From − ∆ U + c − 2 ∂ 2 ∂ t 2 U = 0 , choose v = ∂ U ∂ t and σ = −∇ U . Ω ⊂ R n Lipschitz bounded. Velocity c piecewise constant. ◮ Neumann σ · n = g & Robin ϑ c v − σ · n = g BCs ( � ), ◮ Maxwell equations ( � ), Extensions: ◮ elasticity, ◮ 1 st order hyperbolic systems ( ∼ ), ◮ Maxwell equations in dispersive materials. . . 6

  8. Space–time mesh and assumptions Introduce space–time polytopic mesh T h on Q . Assume: c = c ( x ) constant in elements. Assume: each face F = ∂ K 1 ∩ ∂ K 2 with normal ( n x F ) is either F , n t ◮ space-like: c | n x F , denote F ⊂ F space , or F | < n t h ◮ time-like: n t F = 0 , denote F ⊂ F time . h DG notation: t F T w | K 1 + w | K 2 τ | K 1 + τ | K 2 h T { { w } } := , { { τ } } := , 2 2 ] N := w | K 1 n x K 1 + w | K 2 n x [ [ w ] K 2 , ] N := τ | K 1 · n x K 1 + τ | K 2 · n x [ [ τ ] K 2 , K 2 = ( w − − w + ) n t ] t := w | K 1 n t K 1 + w | K 2 n t [ [ w ] F , K 2 = ( τ − − τ + ) n t ] t := τ | K 1 n t K 1 + τ | K 2 n t [ [ τ ] F , n x K K F 0 F T 0 h := Ω × { 0 } , h := Ω × { T } , x F 0 F space F time h F ∂ h := ∂ Ω × [ 0 , T ] . h h 7

  9. DG elemental equation and numerical fluxes � Trefftz ( w , τ ) ∈ L 2 ( Q ) , ( w | K , τ | K ) ∈ H 1 ( K ) 1 + n , T ( T h ) := space: � ∇ w + ∂ τ ∇ · τ + c − 2 ∂ w ∂ t = 0 , ∂ t = 0 ∀ K ∈ T h . Multiplying PDEs with test ( w , τ ) , integrating by parts in K , using Trefftz property and summing over K ∈ T h : ∀ ( w , τ ) ∈ T ( T h ) � � � � � � σ · τ + 1 ( v τ + σ w ) · n x n t K + c 2 v w d S = 0 . K ∂ K K ∈T h We approximate skeleton traces of ( v , σ ) with numerical fluxes σ hp ) , defined as α, β ∈ L ∞ ( F time ∪ F ∂ ( � v hp , � h ) h   v − σ − on F space   ,     hp hp h     on F T   v hp σ hp h ,   on F 0 � v hp := σ hp := � h , v 0 σ 0       on F time { { v hp } } + β [ { { σ hp } } + α [  [ σ hp ] ] N  [ v hp ] ] N ,   h     on F ∂ σ hp − α ( v − g ) n x g h . Ω α = β = 0 → K RETZSCHMAR –S.–T.–W., αβ ≥ 1 4 → M ONK –R ICHTER . 8

  10. Trefftz-DG formulation Substituting the fluxes in the elemental equation and choosing any finite-dimensional V p ( T h ) ⊂ T ( T h ) , write Trefftz-DG as: Seek ( v hp , σ hp ) ∈ V p ( T h ) s.t. , ∀ ( w , τ ) ∈ V p ( T h ) , where A ( v hp , σ hp ; w , τ ) = ℓ ( w , τ ) � v − � hp [ [ w ] ] t � + σ − ] t + v − ] N + σ − A ( v hp , σ hp ; w , τ ):= hp · [ [ τ ] hp [ [ τ ] hp · [ [ w ] ] N d S c 2 F space h � � � + { { v hp } } [ [ τ ] ] N + { { σ hp } } · [ [ w ] ] N + α [ [ v hp ] ] N · [ [ w ] ] N + β [ [ σ hp ] ] N [ [ τ ] ] N d S F time h � � � � ( c − 2 v hp w + σ hp · τ ) d S + + σ hp · n Ω + α v hp w d S , F T F ∂ h h � � ( c − 2 v 0 w + σ 0 · τ ) d S + ℓ ( w , τ ) := g ( α w − τ · n Ω ) d S . F 0 F ∂ h h 9

  11. Global, implicit and explicit schemes 1 Trefftz-DG formulation is global in space–time domain Q : large linear system! Might be good for adaptivity. t 2 If mesh is partitioned in time-slabs S 3 Ω × ( t j − 1 , t j ) , matrix is block lower-triangular: S 2 for each time-slab a system can be solved S 1 sequentially: implicit method. x 3 If mesh is suitably chosen, Trefftz-DG solution t can be computed with a sequence of local systems: explicit method, allows parallelism! “Tent pitching algorithm” of Ü NGÖR –S HEFFER , x M ONK –R ICHTER , G OPALAKRISHNAN –M ONK –S EPÚLVEDA , G OPALAKRISHNAN –S CHÖBERL –W INTERSTEIGER . . . (See talk tomorrow.) Versions 1–2–3 are algebraically equivalent (on the same mesh). 10

  12. Tent-pitched elements Tent-pitched elements/patches obtained from regular space meshes in 2+1D give parallelepipeds or octahedra+tetrahedra: t t 2 3 2 1 1 1 2 2 2 1 3 2 3 3 3 2 1 3 2 1 1 1 2 2 3 2 2 2 2 1 2 3 3 3 2 3 1 1 1 1 1 3 2 2 1 2 2 2 3 2 3 3 3 3 2 2 3 1 2 1 1 1 2 3 2 2 2 1 3 2 3 3 2 1 3 2 1 1 2 2 3 2 3 3 Trefftz requires quadrature on faces only: only the shape of space elements matters. Simplices around a tent pole can be merged in single element. 11

  13. Part III Trefftz-DG error analysis

  14. Trefftz-DG norms Assume α, β > 0 , F ∈ [ 0 , 1 ) on F space . γ := c | n x F | / n t h Define jump/averages seminorms on H 1 ( T h ) 1 + n : � � � � � DG := 1 2 2 ||| ( w , τ ) ||| 2 � c − 1 w � � � � h ) + � τ � � 2 L 2 ( F 0 h ∪F T L 2 ( F 0 h ∪F T h ) n � � � � � 2 2 � 1 − γ � 1 / 2 � 1 − γ � 1 / 2 � � � � c − 1 [ + [ w ] ] t + [ [ τ ] ] t � � � � n t n t � � � � L 2 ( F space L 2 ( F space F F ) n ) h h � � � � � � 2 2 2 � α 1 / 2 [ � β 1 / 2 [ � α 1 / 2 w � � � � � � + [ w ] ] N ) n + [ τ ] ] N ) + h ) , � � � L 2 ( F time L 2 ( F time L 2 ( F ∂ h h ||| ( w , τ ) ||| 2 DG + := ||| ( w , τ ) ||| 2 DG � n t � n t � � 2 � � 2 � 1 / 2 � 1 / 2 � � � � c − 1 w − τ − F F + 2 + 2 � � � � 1 − γ 1 − γ � � � � L 2 ( F space L 2 ( F space ) ) n h h � � � � � � 2 2 2 � β − 1 / 2 { � α − 1 / 2 { � α − 1 / 2 τ · n � � � � � � + { w } } ) + { τ } } ) n + h ) . � � � L 2 ( F time L 2 ( F time L 2 ( F ∂ h h They are norms on Trefftz space T ( T h ) . 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend