succinct compilation of propositional theories
play

Succinct Compilation of Propositional Theories Simone Bova Vienna - PowerPoint PPT Presentation

C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Succinct Compilation of Propositional Theories Simone Bova Vienna University of Technology Universidad del Pa s Vasco February 6, 2013 C LASSICAL C OMPILATION P


  1. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Entailment C LAUSE E NTAILMENT is computationally intractable (coNP-hard). Take φ , the theory, as background knowledge and δ , the query, as online information (practical case in artificial intelligence). Definition (Compilation) A compilation is a (computable) map c st for all φ and δ : 1. c ( φ ) | = δ iff φ | = δ (ie, c ( φ ) logically equivalent to φ ); 2. c ( φ ) | = δ is poly-time decidable. A series of hard instances, ( φ, δ 1 ) ( φ, δ 2 ) ( φ, δ 3 ) . . .

  2. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Entailment C LAUSE E NTAILMENT is computationally intractable (coNP-hard). Take φ , the theory, as background knowledge and δ , the query, as online information (practical case in artificial intelligence). Definition (Compilation) A compilation is a (computable) map c st for all φ and δ : 1. c ( φ ) | = δ iff φ | = δ (ie, c ( φ ) logically equivalent to φ ); 2. c ( φ ) | = δ is poly-time decidable. A series of hard instances, compiles into a series of easy equivalent instances: ( φ, δ 1 ) ( c ( φ ) , δ 1 ) � ( φ, δ 2 ) ( c ( φ ) , δ 2 ) � ( φ, δ 3 ) ( c ( φ ) , δ 3 ) � . . . . . . . . .

  3. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Entailment Example (Compilation into DNF) Compile φ into DNF c ( φ ) logically equivalent to φ , eg:

  4. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Entailment Example (Compilation into DNF) Compile φ into DNF c ( φ ) logically equivalent to φ , eg: φ = ( x 1 ∨ x 2 ) ∧ ( x 3 ∨ x 4 ) ,

  5. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Entailment Example (Compilation into DNF) Compile φ into DNF c ( φ ) logically equivalent to φ , eg: φ = ( x 1 ∨ x 2 ) ∧ ( x 3 ∨ x 4 ) , c ( φ ) = ( x 1 ∧ x 3 ) ∨ ( x 1 ∧ x 4 ) ∨ ( x 2 ∧ x 3 ) ∨ ( x 2 ∧ x 4 ) .

  6. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Entailment Example (Compilation into DNF) Compile φ into DNF c ( φ ) logically equivalent to φ , eg: φ = ( x 1 ∨ x 2 ) ∧ ( x 3 ∨ x 4 ) , c ( φ ) = ( x 1 ∧ x 3 ) ∨ ( x 1 ∧ x 4 ) ∨ ( x 2 ∧ x 3 ) ∨ ( x 2 ∧ x 4 ) . Check c ( φ ) | = δ , eg, δ = ¬ x 3 ∨ x 4 :

  7. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Entailment Example (Compilation into DNF) Compile φ into DNF c ( φ ) logically equivalent to φ , eg: φ = ( x 1 ∨ x 2 ) ∧ ( x 3 ∨ x 4 ) , c ( φ ) = ( x 1 ∧ x 3 ) ∨ ( x 1 ∧ x 4 ) ∨ ( x 2 ∧ x 3 ) ∨ ( x 2 ∧ x 4 ) . Check c ( φ ) | = δ , eg, δ = ¬ x 3 ∨ x 4 : c ( φ ) | = δ iff c ( φ ) ∧ ¬ δ unsatisfiable,

  8. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Entailment Example (Compilation into DNF) Compile φ into DNF c ( φ ) logically equivalent to φ , eg: φ = ( x 1 ∨ x 2 ) ∧ ( x 3 ∨ x 4 ) , c ( φ ) = ( x 1 ∧ x 3 ) ∨ ( x 1 ∧ x 4 ) ∨ ( x 2 ∧ x 3 ) ∨ ( x 2 ∧ x 4 ) . Check c ( φ ) | = δ , eg, δ = ¬ x 3 ∨ x 4 : c ( φ ) | = δ iff c ( φ ) ∧ ¬ δ unsatisfiable, iff c ( φ ) ∧ ( x 3 ∧ ¬ x 4 ) unsatisfiable,

  9. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Entailment Example (Compilation into DNF) Compile φ into DNF c ( φ ) logically equivalent to φ , eg: φ = ( x 1 ∨ x 2 ) ∧ ( x 3 ∨ x 4 ) , c ( φ ) = ( x 1 ∧ x 3 ) ∨ ( x 1 ∧ x 4 ) ∨ ( x 2 ∧ x 3 ) ∨ ( x 2 ∧ x 4 ) . Check c ( φ ) | = δ , eg, δ = ¬ x 3 ∨ x 4 : c ( φ ) | = δ iff c ( φ ) ∧ ¬ δ unsatisfiable, iff c ( φ ) ∧ ( x 3 ∧ ¬ x 4 ) unsatisfiable, iff (( x 1 ∧ x 3 ) ∨ ( x 1 ∧ x 4 ) ∨ ( x 2 ∧ x 3 ) ∨ ( x 2 ∧ x 4 )) ∧ ( x 3 ∧ ¬ x 4 ) unsatisfiable,

  10. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Entailment Example (Compilation into DNF) Compile φ into DNF c ( φ ) logically equivalent to φ , eg: φ = ( x 1 ∨ x 2 ) ∧ ( x 3 ∨ x 4 ) , c ( φ ) = ( x 1 ∧ x 3 ) ∨ ( x 1 ∧ x 4 ) ∨ ( x 2 ∧ x 3 ) ∨ ( x 2 ∧ x 4 ) . Check c ( φ ) | = δ , eg, δ = ¬ x 3 ∨ x 4 : c ( φ ) | = δ iff c ( φ ) ∧ ¬ δ unsatisfiable, iff c ( φ ) ∧ ( x 3 ∧ ¬ x 4 ) unsatisfiable, iff (( x 1 ∧ x 3 ) ∨ ( x 1 ∧ x 4 ) ∨ ( x 2 ∧ x 3 ) ∨ ( x 2 ∧ x 4 )) ∧ ( x 3 ∧ ¬ x 4 ) unsatisfiable, iff x 1 ∨ x 2 unsatisfiable (false).

  11. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Entailment Example (Compilation into DNF) Compile φ into DNF c ( φ ) logically equivalent to φ , eg: φ = ( x 1 ∨ x 2 ) ∧ ( x 3 ∨ x 4 ) , c ( φ ) = ( x 1 ∧ x 3 ) ∨ ( x 1 ∧ x 4 ) ∨ ( x 2 ∧ x 3 ) ∨ ( x 2 ∧ x 4 ) . Check c ( φ ) | = δ , eg, δ = ¬ x 3 ∨ x 4 : c ( φ ) | = δ iff c ( φ ) ∧ ¬ δ unsatisfiable, iff c ( φ ) ∧ ( x 3 ∧ ¬ x 4 ) unsatisfiable, iff (( x 1 ∧ x 3 ) ∨ ( x 1 ∧ x 4 ) ∨ ( x 2 ∧ x 3 ) ∨ ( x 2 ∧ x 4 )) ∧ ( x 3 ∧ ¬ x 4 ) unsatisfiable, iff x 1 ∨ x 2 unsatisfiable (false). Thus, C LAUSE E NTAILMENT compiles via such c :

  12. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Entailment Example (Compilation into DNF) Compile φ into DNF c ( φ ) logically equivalent to φ , eg: φ = ( x 1 ∨ x 2 ) ∧ ( x 3 ∨ x 4 ) , c ( φ ) = ( x 1 ∧ x 3 ) ∨ ( x 1 ∧ x 4 ) ∨ ( x 2 ∧ x 3 ) ∨ ( x 2 ∧ x 4 ) . Check c ( φ ) | = δ , eg, δ = ¬ x 3 ∨ x 4 : c ( φ ) | = δ iff c ( φ ) ∧ ¬ δ unsatisfiable, iff c ( φ ) ∧ ( x 3 ∧ ¬ x 4 ) unsatisfiable, iff (( x 1 ∧ x 3 ) ∨ ( x 1 ∧ x 4 ) ∨ ( x 2 ∧ x 3 ) ∨ ( x 2 ∧ x 4 )) ∧ ( x 3 ∧ ¬ x 4 ) unsatisfiable, iff x 1 ∨ x 2 unsatisfiable (false). Thus, C LAUSE E NTAILMENT compiles via such c : 1. c ( φ ) | = δ iff φ | = δ for all δ ;

  13. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Entailment Example (Compilation into DNF) Compile φ into DNF c ( φ ) logically equivalent to φ , eg: φ = ( x 1 ∨ x 2 ) ∧ ( x 3 ∨ x 4 ) , c ( φ ) = ( x 1 ∧ x 3 ) ∨ ( x 1 ∧ x 4 ) ∨ ( x 2 ∧ x 3 ) ∨ ( x 2 ∧ x 4 ) . Check c ( φ ) | = δ , eg, δ = ¬ x 3 ∨ x 4 : c ( φ ) | = δ iff c ( φ ) ∧ ¬ δ unsatisfiable, iff c ( φ ) ∧ ( x 3 ∧ ¬ x 4 ) unsatisfiable, iff (( x 1 ∧ x 3 ) ∨ ( x 1 ∧ x 4 ) ∨ ( x 2 ∧ x 3 ) ∨ ( x 2 ∧ x 4 )) ∧ ( x 3 ∧ ¬ x 4 ) unsatisfiable, iff x 1 ∨ x 2 unsatisfiable (false). Thus, C LAUSE E NTAILMENT compiles via such c : 1. c ( φ ) | = δ iff φ | = δ for all δ ; 2. c ( φ ) | = δ is poly-time decidable (reduction to DNF satisfiability, easy).

  14. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Succinctness Example (Compilation into DNF, Cont’d) • φ = ( x 1 ∨ x 2 ) ∧ ( x 3 ∨ x 4 ) ∧ · · · ∧ ( x n − 1 ∨ x n ) is size | φ | = n ;

  15. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Succinctness Example (Compilation into DNF, Cont’d) • φ = ( x 1 ∨ x 2 ) ∧ ( x 3 ∨ x 4 ) ∧ · · · ∧ ( x n − 1 ∨ x n ) is size | φ | = n ; • | c ( φ ) | ≥ | ( x 1 ∧ x 3 ∧ · · · ∧ x n − 1 ) ∨ · · · ∨ ( x 2 ∧ x 4 ∧ · · · ∧ x n ) | ≥ 2 n / 2 · n / 2;

  16. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Succinctness Example (Compilation into DNF, Cont’d) • φ = ( x 1 ∨ x 2 ) ∧ ( x 3 ∨ x 4 ) ∧ · · · ∧ ( x n − 1 ∨ x n ) is size | φ | = n ; • | c ( φ ) | ≥ | ( x 1 ∧ x 3 ∧ · · · ∧ x n − 1 ) ∨ · · · ∨ ( x 2 ∧ x 4 ∧ · · · ∧ x n ) | ≥ 2 n / 2 · n / 2; • | c ( φ ) | is not polynomially bounded in the size of | φ | .

  17. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Succinctness Example (Compilation into DNF, Cont’d) • φ = ( x 1 ∨ x 2 ) ∧ ( x 3 ∨ x 4 ) ∧ · · · ∧ ( x n − 1 ∨ x n ) is size | φ | = n ; • | c ( φ ) | ≥ | ( x 1 ∧ x 3 ∧ · · · ∧ x n − 1 ) ∨ · · · ∨ ( x 2 ∧ x 4 ∧ · · · ∧ x n ) | ≥ 2 n / 2 · n / 2; • | c ( φ ) | is not polynomially bounded in the size of | φ | . Definition (Succinctness) A compilation c is succinct if | c ( φ ) | is polynomially bounded in | φ | , ie, there exists d st for all φ , | c ( φ ) | ∈ O ( | φ | d ) .

  18. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Succinctness Example (Compilation into DNF, Cont’d) • φ = ( x 1 ∨ x 2 ) ∧ ( x 3 ∨ x 4 ) ∧ · · · ∧ ( x n − 1 ∨ x n ) is size | φ | = n ; • | c ( φ ) | ≥ | ( x 1 ∧ x 3 ∧ · · · ∧ x n − 1 ) ∨ · · · ∨ ( x 2 ∧ x 4 ∧ · · · ∧ x n ) | ≥ 2 n / 2 · n / 2; • | c ( φ ) | is not polynomially bounded in the size of | φ | . Definition (Succinctness) A compilation c is succinct if | c ( φ ) | is polynomially bounded in | φ | , ie, there exists d st for all φ , | c ( φ ) | ∈ O ( | φ | d ) . Remark Without succinctness, C LAUSE E NTAILMENT compiles even requiring that = δ is decidable in time O ( | φ | d ) . c ( φ ) |

  19. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Compilability L ITERAL E NTAILMENT is C LAUSE E NTAILMENT restricted to instances ( φ, δ ) where δ is a literal.

  20. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Compilability L ITERAL E NTAILMENT is C LAUSE E NTAILMENT restricted to instances ( φ, δ ) where δ is a literal. Fact L ITERAL E NTAILMENT compiles succinctly.

  21. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Compilability L ITERAL E NTAILMENT is C LAUSE E NTAILMENT restricted to instances ( φ, δ ) where δ is a literal. Fact L ITERAL E NTAILMENT compiles succinctly. Proof. The map c sends φ to c ( φ ) , the conjunction of all literals entailed by φ (computing c involves solving ≤ | φ | many instances of a coNP-hard problem). For all literals δ , clearly c ( φ ) | = δ is poly-time decidable (check δ occurs in c ( φ ) as a conjunct), c ( φ ) | = δ iff φ | = δ . Moreover, | c ( φ ) | ≤ | φ | , thus c is succinct.

  22. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Classical Compilability | Incompilability Theorem (Selman and Kautz, 1996) C LAUSE E NTAILMENT does not compile succinctly (under standard assumptions in complexity theory).

  23. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Classical Compilability | Incompilability Theorem (Selman and Kautz, 1996) C LAUSE E NTAILMENT does not compile succinctly (under standard assumptions in complexity theory). Proof. Suppose not. Let n ∈ N . Key observation (easy). There exists a proposition τ n of size O ( n 3 ) st for all 3CNF χ on n variables, there exists a clause δ χ st τ n | = δ χ if and only if χ is unsatisfiable. Let τ n � c ( τ n ) be a succint compilation of τ n . We give a polynomial-time algorithm for the satisfiability of 3CNFs on n variables, ie, 3SAT in P/poly which implies NP ⊆ P/poly and thus PH collapses to Σ p 2 (Karp and Lipton, 1980). The algorithm, given a propositional formula χ on n variables, decides in polynomial-time the question c ( τ n ) | = δ χ (here c ( τ n ) is the advice), and reports that χ is satisfiable if and only if the answer is negative.

  24. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Outline Classical Compilation Parameterized Compilation Research Agenda

  25. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Fixed-Parameter Tractability 3SAT: Given a 3CNF φ on n variables, is φ satisfiable?

  26. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Fixed-Parameter Tractability 3SAT: Given a 3CNF φ on n variables, is φ satisfiable? 3SAT is NP-hard:

  27. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Fixed-Parameter Tractability 3SAT: Given a 3CNF φ on n variables, is φ satisfiable? 3SAT is NP-hard: 1. solvable in exponential time O ( d n ) with d < 2;

  28. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Fixed-Parameter Tractability 3SAT: Given a 3CNF φ on n variables, is φ satisfiable? 3SAT is NP-hard: 1. solvable in exponential time O ( d n ) with d < 2; 2. believed not solvable in subexponential time 2 o ( n ) .

  29. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Fixed-Parameter Tractability 3SAT: Given a 3CNF φ on n variables, is φ satisfiable? 3SAT is NP-hard: 1. solvable in exponential time O ( d n ) with d < 2; 2. believed not solvable in subexponential time 2 o ( n ) . Theorem 3SAT is is solvable in time O ( k 2 k · n ) where k is the treewidth of the instance

  30. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Fixed-Parameter Tractability 3SAT: Given a 3CNF φ on n variables, is φ satisfiable? 3SAT is NP-hard: 1. solvable in exponential time O ( d n ) with d < 2; 2. believed not solvable in subexponential time 2 o ( n ) . Theorem 3SAT is is solvable in time O ( k 2 k · n ) where k is the treewidth of the instance O ( k 2 k · n ) faster than O ( d n ) if k is much smaller than n ( k ≪ n ).

  31. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Fixed-Parameter Tractability 3SAT: Given a 3CNF φ on n variables, is φ satisfiable? 3SAT is NP-hard: 1. solvable in exponential time O ( d n ) with d < 2; 2. believed not solvable in subexponential time 2 o ( n ) . Theorem 3SAT is is solvable in time O ( k 2 k · n ) where k is the treewidth of the instance O ( k 2 k · n ) faster than O ( d n ) if k is much smaller than n ( k ≪ n ). Example Treewidth tw ( φ ) of typical industrial instance φ on 2000 vars is < 10.

  32. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Fixed-Parameter Tractability 3SAT: Given a 3CNF φ on n variables, is φ satisfiable? 3SAT is NP-hard: 1. solvable in exponential time O ( d n ) with d < 2; 2. believed not solvable in subexponential time 2 o ( n ) . Theorem 3SAT is is solvable in time O ( k 2 k · n ) where k is the treewidth of the instance, ie, 3SAT is fixed-parameter tractable wrt parameterization tw , ie, it has a runtime of the form f ( tw ( φ )) | φ | d for some constant d and function f. O ( k 2 k · n ) faster than O ( d n ) if k is much smaller than n ( k ≪ n ). Example Treewidth tw ( φ ) of typical industrial instance φ on 2000 vars is < 10.

  33. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Treewidth Example φ = ( ¬ x 7 ∨ ¬ x 5 ∨ ¬ x 3 ) ∧ ( x 4 ∨ x 2 ∨ ¬ x 3 ) ∧ ( ¬ x 3 ∨ ¬ x 8 ∨ ¬ x 4 ) ∧ ( ¬ x 8 ∨ x 6 ∨ ¬ x 5 ) ∧ ( x 4 ∨ ¬ x 1 ∨ ¬ x 7 ) .

  34. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Treewidth Example φ = ( ¬ x 7 ∨ ¬ x 5 ∨ ¬ x 3 ) ∧ ( x 4 ∨ x 2 ∨ ¬ x 3 ) ∧ ( ¬ x 3 ∨ ¬ x 8 ∨ ¬ x 4 ) ∧ ( ¬ x 8 ∨ x 6 ∨ ¬ x 5 ) ∧ ( x 4 ∨ ¬ x 1 ∨ ¬ x 7 ) . 2 1 4 3 5 7 8 6 Figure: Primal graph of φ .

  35. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Treewidth Example φ = ( ¬ x 7 ∨ ¬ x 5 ∨ ¬ x 3 ) ∧ ( x 4 ∨ x 2 ∨ ¬ x 3 ) ∧ ( ¬ x 3 ∨ ¬ x 8 ∨ ¬ x 4 ) ∧ ( ¬ x 8 ∨ x 6 ∨ ¬ x 5 ) ∧ ( x 4 ∨ ¬ x 1 ∨ ¬ x 7 ) . 2 1 4 3 5 7 8 6 Figure: {{ 1 , 4 } , { 2 , 3 } , { 5 , 6 , 8 } , { 7 }} 4-bramble implies tw ( φ ) ≥ 3.

  36. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Treewidth Example φ = ( ¬ x 7 ∨ ¬ x 5 ∨ ¬ x 3 ) ∧ ( x 4 ∨ x 2 ∨ ¬ x 3 ) ∧ ( ¬ x 3 ∨ ¬ x 8 ∨ ¬ x 4 ) ∧ ( ¬ x 8 ∨ x 6 ∨ ¬ x 5 ) ∧ ( x 4 ∨ ¬ x 1 ∨ ¬ x 7 ) . 2 1 4 3 5 7 8 6 Figure: Primal graph of φ . Elimination 2 , 1 , 6 , 5 , 4 , 3 , 8 , 7 gives tw ( φ ) ≤ 3.

  37. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Treewidth Example φ = ( ¬ x 7 ∨ ¬ x 5 ∨ ¬ x 3 ) ∧ ( x 4 ∨ x 2 ∨ ¬ x 3 ) ∧ ( ¬ x 3 ∨ ¬ x 8 ∨ ¬ x 4 ) ∧ ( ¬ x 8 ∨ x 6 ∨ ¬ x 5 ) ∧ ( x 4 ∨ ¬ x 1 ∨ ¬ x 7 ) . 2 1 4 3 5 7 8 6 Figure: Eliminating 2, neigborhood size |{ 3 , 4 }| = 2 . . .

  38. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Treewidth Example φ = ( ¬ x 7 ∨ ¬ x 5 ∨ ¬ x 3 ) ∧ ( x 4 ∨ x 2 ∨ ¬ x 3 ) ∧ ( ¬ x 3 ∨ ¬ x 8 ∨ ¬ x 4 ) ∧ ( ¬ x 8 ∨ x 6 ∨ ¬ x 5 ) ∧ ( x 4 ∨ ¬ x 1 ∨ ¬ x 7 ) . 2 1 4 3 5 7 8 6 Figure: Eliminating 1, neigborhood size |{ 4 , 7 }| = 2 . . .

  39. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Treewidth Example φ = ( ¬ x 7 ∨ ¬ x 5 ∨ ¬ x 3 ) ∧ ( x 4 ∨ x 2 ∨ ¬ x 3 ) ∧ ( ¬ x 3 ∨ ¬ x 8 ∨ ¬ x 4 ) ∧ ( ¬ x 8 ∨ x 6 ∨ ¬ x 5 ) ∧ ( x 4 ∨ ¬ x 1 ∨ ¬ x 7 ) . 2 1 4 3 5 7 8 6 Figure: Eliminating 6, neigborhood size |{ 5 , 8 }| = 2 . . .

  40. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Treewidth Example φ = ( ¬ x 7 ∨ ¬ x 5 ∨ ¬ x 3 ) ∧ ( x 4 ∨ x 2 ∨ ¬ x 3 ) ∧ ( ¬ x 3 ∨ ¬ x 8 ∨ ¬ x 4 ) ∧ ( ¬ x 8 ∨ x 6 ∨ ¬ x 5 ) ∧ ( x 4 ∨ ¬ x 1 ∨ ¬ x 7 ) . 2 1 4 3 5 7 8 6 Figure: Eliminating 5, neigborhood size |{ 3 , 7 , 8 }| = 3 . . .

  41. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Treewidth Example φ = ( ¬ x 7 ∨ ¬ x 5 ∨ ¬ x 3 ) ∧ ( x 4 ∨ x 2 ∨ ¬ x 3 ) ∧ ( ¬ x 3 ∨ ¬ x 8 ∨ ¬ x 4 ) ∧ ( ¬ x 8 ∨ x 6 ∨ ¬ x 5 ) ∧ ( x 4 ∨ ¬ x 1 ∨ ¬ x 7 ) . 2 1 3 5 7 8 6 Figure: Eliminating 4, neigborhood size |{ 3 , 7 , 8 }| = 3.

  42. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Treewidth Example φ = ( ¬ x 7 ∨ ¬ x 5 ∨ ¬ x 3 ) ∧ ( x 4 ∨ x 2 ∨ ¬ x 3 ) ∧ ( ¬ x 3 ∨ ¬ x 8 ∨ ¬ x 4 ) ∧ ( ¬ x 8 ∨ x 6 ∨ ¬ x 5 ) ∧ ( x 4 ∨ ¬ x 1 ∨ ¬ x 7 ) . 2 1 3 5 7 8 6 Figure: Eliminating 4, neigborhood size |{ 3 , 7 , 8 }| = 3. Done.

  43. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Treewidth Example φ = ( ¬ x 7 ∨ ¬ x 5 ∨ ¬ x 3 ) ∧ ( x 4 ∨ x 2 ∨ ¬ x 3 ) ∧ ( ¬ x 3 ∨ ¬ x 8 ∨ ¬ x 4 ) ∧ ( ¬ x 8 ∨ x 6 ∨ ¬ x 5 ) ∧ ( x 4 ∨ ¬ x 1 ∨ ¬ x 7 ) . 2 1 4 3 5 7 8 6 Figure: tw ( φ ) = 3.

  44. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Parameterized Compilation C LAUSE E NTAILMENT : Given ( φ, δ ) , does φ | = δ ?

  45. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Parameterized Compilation C LAUSE E NTAILMENT : Given ( φ, δ ) , does φ | = δ ? A parameterization is a map κ sending pairs ( φ, δ ) into N .

  46. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Parameterized Compilation C LAUSE E NTAILMENT : Given ( φ, δ ) , does φ | = δ ? A parameterization is a map κ sending pairs ( φ, δ ) into N . Definition (Parametrically Succinct Compilation) Let κ be a parameterization. A compilation c is (wrt parameterization κ ):

  47. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Parameterized Compilation C LAUSE E NTAILMENT : Given ( φ, δ ) , does φ | = δ ? A parameterization is a map κ sending pairs ( φ, δ ) into N . Definition (Parametrically Succinct Compilation) Let κ be a parameterization. A compilation c is (wrt parameterization κ ): 1. kernel-size if | c ( φ ) | ≤ f ( κ ( φ, δ )) for some function f ;

  48. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Parameterized Compilation C LAUSE E NTAILMENT : Given ( φ, δ ) , does φ | = δ ? A parameterization is a map κ sending pairs ( φ, δ ) into N . Definition (Parametrically Succinct Compilation) Let κ be a parameterization. A compilation c is (wrt parameterization κ ): 1. kernel-size if | c ( φ ) | ≤ f ( κ ( φ, δ )) for some function f ; 2. fpt-size (or fixed-parameter tractable in size ) if | c ( φ ) | ≤ f ( κ ( φ, δ )) · | ( φ, δ ) | d for some function f and constant d .

  49. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Parameterized Compilation C LAUSE E NTAILMENT fails classical compilation, ie, does not compile succinctly (unless PH collapses).

  50. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Parameterized Compilation C LAUSE E NTAILMENT fails classical compilation, ie, does not compile succinctly (unless PH collapses). Can we relativize classical incompilability by parametrized compilability ? Ie:

  51. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Parameterized Compilation C LAUSE E NTAILMENT fails classical compilation, ie, does not compile succinctly (unless PH collapses). Can we relativize classical incompilability by parametrized compilability ? Ie: 1. find parameterizations κ st C LAUSE E NTAILMENT compiles in kernel-size (wrt κ );

  52. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Parameterized Compilation C LAUSE E NTAILMENT fails classical compilation, ie, does not compile succinctly (unless PH collapses). Can we relativize classical incompilability by parametrized compilability ? Ie: 1. find parameterizations κ st C LAUSE E NTAILMENT compiles in kernel-size (wrt κ ); 2. find parameterizations κ st C LAUSE E NTAILMENT compiles in fpt-size (wrt κ ).

  53. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Parameterized Compilation C LAUSE E NTAILMENT fails classical compilation, ie, does not compile succinctly (unless PH collapses). Can we relativize classical incompilability by parametrized compilability ? Ie: 1. find parameterizations κ st C LAUSE E NTAILMENT compiles in kernel-size (wrt κ ); 2. find parameterizations κ st C LAUSE E NTAILMENT compiles in fpt-size (wrt κ ). Remark 1. There are examples witnessing (1) kernel-size compilability, (2 and not 1) fpt-size compilability but kernel-size incompilability, and (not 2) fpt-size incompilability.

  54. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Parameterized Compilation C LAUSE E NTAILMENT fails classical compilation, ie, does not compile succinctly (unless PH collapses). Can we relativize classical incompilability by parametrized compilability ? Ie: 1. find parameterizations κ st C LAUSE E NTAILMENT compiles in kernel-size (wrt κ ); 2. find parameterizations κ st C LAUSE E NTAILMENT compiles in fpt-size (wrt κ ). Remark 1. There are examples witnessing (1) kernel-size compilability, (2 and not 1) fpt-size compilability but kernel-size incompilability, and (not 2) fpt-size incompilability. 2. Parameterizations κ yielding fixed-parameter tractability of C LAUSE E NTAILMENT are uninteresting wrt parameterized compilation.

  55. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Implicates φ is a proposition, δ is a clause:

  56. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Implicates φ is a proposition, δ is a clause: 1. δ implicate of φ if φ | = δ and ⊤ �| = δ ;

  57. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Implicates φ is a proposition, δ is a clause: 1. δ implicate of φ if φ | = δ and ⊤ �| = δ ; 2. δ prime implicate of φ if, = δ ′ | = δ ′ for all implicates δ ′ of φ . φ | = δ implies δ |

  58. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Implicates φ is a proposition, δ is a clause: 1. δ implicate of φ if φ | = δ and ⊤ �| = δ ; 2. δ prime implicate of φ if, = δ ′ | = δ ′ for all implicates δ ′ of φ . φ | = δ implies δ | pif ( φ ) , prime implicate form of φ , is conjunction of prime implicates of φ .

  59. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Implicates φ is a proposition, δ is a clause: 1. δ implicate of φ if φ | = δ and ⊤ �| = δ ; 2. δ prime implicate of φ if, = δ ′ | = δ ′ for all implicates δ ′ of φ . φ | = δ implies δ | pif ( φ ) , prime implicate form of φ , is conjunction of prime implicates of φ . Fact 1. For all clauses δ , φ | = δ iff δ i | = δ for some clause δ i of pif ( φ ) .

  60. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Implicates φ is a proposition, δ is a clause: 1. δ implicate of φ if φ | = δ and ⊤ �| = δ ; 2. δ prime implicate of φ if, = δ ′ | = δ ′ for all implicates δ ′ of φ . φ | = δ implies δ | pif ( φ ) , prime implicate form of φ , is conjunction of prime implicates of φ . Fact 1. For all clauses δ , φ | = δ iff δ i | = δ for some clause δ i of pif ( φ ) . 2. pif ( φ ) | = δ is poly-time.

  61. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Implicates φ is a proposition, δ is a clause: 1. δ implicate of φ if φ | = δ and ⊤ �| = δ ; 2. δ prime implicate of φ if, = δ ′ | = δ ′ for all implicates δ ′ of φ . φ | = δ implies δ | pif ( φ ) , prime implicate form of φ , is conjunction of prime implicates of φ . Fact 1. For all clauses δ , φ | = δ iff δ i | = δ for some clause δ i of pif ( φ ) . 2. pif ( φ ) | = δ is poly-time. 3. pif ( φ ) is logically equivalent to φ .

  62. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Implicates φ is a proposition, δ is a clause: 1. δ implicate of φ if φ | = δ and ⊤ �| = δ ; 2. δ prime implicate of φ if, = δ ′ | = δ ′ for all implicates δ ′ of φ . φ | = δ implies δ | pif ( φ ) , prime implicate form of φ , is conjunction of prime implicates of φ . Fact 1. For all clauses δ , φ | = δ iff δ i | = δ for some clause δ i of pif ( φ ) . 2. pif ( φ ) | = δ is poly-time. 3. pif ( φ ) is logically equivalent to φ . Remark Prime implicate forms can be redundant. Irredundant prime implicate forms are not unique.

  63. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Implicates 1 � � � � 2 � � � � 3 � � � � w x y z φ x ∨ z x ∨ y ¬ w ∨ y ∨ ¬ z ¬ w ∨ ¬ y ∨ z ¬ w ∨ ¬ x ∨ ¬ z ¬ w ∨ ¬ x ∨ ¬ y 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 0 1 1 1 1 0 0 1 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 1 0 0 1 1 1 1 0 1 0 0 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 1 0 1 1 1 1 0 0 1 1 1 0 1 0 1 1 1 1 0 1 1 1 1 0 0 φ has 3 irredundant prime implicate forms.

  64. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Kernel-Size Compilation Parameterization minvar ( φ, δ ) is the smallest k ∈ N such that φ is logically equivalent to a proposition on k variables.

  65. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Kernel-Size Compilation Parameterization minvar ( φ, δ ) is the smallest k ∈ N such that φ is logically equivalent to a proposition on k variables. Observation C LAUSE E NTAILMENT compiles in kernel-size wrt parameterization minvar .

  66. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Kernel-Size Compilation Parameterization minvar ( φ, δ ) is the smallest k ∈ N such that φ is logically equivalent to a proposition on k variables. Observation C LAUSE E NTAILMENT compiles in kernel-size wrt parameterization minvar . Proof. Let φ be a proposition. Take c ( φ ) be the prime implicate normal form of φ (computable by Quine and McKluskey algorithm, hard). Then c ( φ ) uses exactly minvar ( φ, δ ) = k variables, thus | c ( φ ) | ≤ k 2 k .

  67. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Kernel-Size Compilation Parameterization minvar ( φ, δ ) is the smallest k ∈ N such that φ is logically equivalent to a proposition on k variables. Observation C LAUSE E NTAILMENT compiles in kernel-size wrt parameterization minvar . Proof. Let φ be a proposition. Take c ( φ ) be the prime implicate normal form of φ (computable by Quine and McKluskey algorithm, hard). Then c ( φ ) uses exactly minvar ( φ, δ ) = k variables, thus | c ( φ ) | ≤ k 2 k . Conjecture C LAUSE E NTAILMENT not in fpt-time wrt parameterization minvar .

  68. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Kernel-Size Compilation F class of propositions, κ parameterization. F is κ -bounded if there exists k st for all φ ∈ F , κ ( φ ) ≤ k .

  69. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Kernel-Size Compilation F class of propositions, κ parameterization. F is κ -bounded if there exists k st for all φ ∈ F , κ ( φ ) ≤ k . C LAUSE E NTAILMENT ( F ) is C LAUSE E NTAILMENT restricted to instances ( φ, δ ) with φ ∈ F .

  70. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Kernel-Size Compilation F class of propositions, κ parameterization. F is κ -bounded if there exists k st for all φ ∈ F , κ ( φ ) ≤ k . C LAUSE E NTAILMENT ( F ) is C LAUSE E NTAILMENT restricted to instances ( φ, δ ) with φ ∈ F . Conjecture C LAUSE E NTAILMENT ( F ) compiles in constant-size if and only if F is minvar -bounded.

  71. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Kernel-Size Compilation F class of propositions, κ parameterization. F is κ -bounded if there exists k st for all φ ∈ F , κ ( φ ) ≤ k . C LAUSE E NTAILMENT ( F ) is C LAUSE E NTAILMENT restricted to instances ( φ, δ ) with φ ∈ F . Conjecture C LAUSE E NTAILMENT ( F ) compiles in constant-size if and only if F is minvar -bounded. The proposition gives sufficiency (necessity is open).

  72. C LASSICAL C OMPILATION P ARAMETERIZED C OMPILATION R ESEARCH A GENDA Fpt-Size Compilation Parameterization mintw ( φ, δ ) is the smallest k ∈ N such that φ is logically equivalent to a CNF of treewidth k .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend