black hole binaries in einstein dilaton gauss bonnet
play

Black-hole binaries in Einstein-dilaton GaussBonnet gravity Helvi - PowerPoint PPT Presentation

Black-hole binaries in Einstein-dilaton GaussBonnet gravity Helvi Witek Theoretical Particle Physics and Cosmology Department of Physics, Kings College London work in progress with L. Gualtieri, P. Pani, T. Sotiriou Workshop: Gravity


  1. Black-hole binaries in Einstein-dilaton Gauss–Bonnet gravity Helvi Witek Theoretical Particle Physics and Cosmology Department of Physics, King’s College London work in progress with L. Gualtieri, P. Pani, T. Sotiriou Workshop: “Gravity and cosmology 2018”, YITP Kyoto, 6 February 2018 H. Witek (KCL) 1 / 16

  2. Why challenging general relativity? Cosmology • observational evidence for dark matter/energy • cosmological constant problem • evolution of the universe High-energy physics • general relativity is non-renormalizable • UV completion and quantum gravity? • curvature singularities H. Witek (KCL) 2 / 16

  3. A need for theoretical predictions. . . GR very well tested, e.g. on solar system scales, with binary pulsars, with gravitational waves from black holes and neutron stars BUT: in merger regime only null tests!!! • very few theoretical predictions in extensions of GR (scalar-tensor theory [Healy et al ’11, Berti ’13, Barausse et al ’12, Shibata et al ’13], dynamical Chern-Simons [Okounkova et al ’17]) • needed to calibrate parametrized models, e.g., extensions of EoB, ppN, ppE, . . . • no parametrized numerical models → choose most promising candidates (credit: LIGO / Virgo Scientific Collaborations) H. Witek (KCL) 3 / 16

  4. Here: Einstein-dilaton Gauss-Bonnet gravity action of EdGB gravity (e.g. Kanti et al ’95) d 4 x √− g � � S = 1 � (4) R + α GB f (Φ) R GB − 1 2( ∇ Φ) 2 16 π • R GB = R 2 − 4 R ab R ab + R abcd R abcd G ab =8 π T Φ ab − 16 πα GB G GB ab , • typically: f (Φ) ∼ e Φ � Φ = − α GB f ′ (Φ) R GB 1 1 use geometric units c = 1 = G H. Witek (KCL) 4 / 16

  5. Why EdGB gravity? High-energy physics • higher curvature corrections relevant in strong-curvature regime • low-energy limit of some string theories (Gross & Sloan ’87, Kanti et al ’95, Moura & Schiappa 06) • compactification of Lovelock gravity (Charmousis ’14) H. Witek (KCL) 5 / 16

  6. Why EdGB gravity? – musings on compact objects • in standard scalar-tensor theory: • BUT: reverse in quadratic gravity! • no-hair theorems for BHs • BHs can have hair! (Bekenstein ’95, Heusler ’96, Sotiriou & Faraoni ’11) (Hui & Nicolis ’12, Sotiriou & Zhou ’14) • neutron stars can have scalar hair • monopole scalar charge for neutron star vanishes (Yagi et al ’15) (Damour & Esposito-Farese ’93, ’96, . . . ) J • rotating black holes with χ = M 2 in small coupling approximation (Kanti et al ’95, Pani et ’09, ’11, Stein & Yunes ’11, Sotiriou & Zhou ’14, Ayzenberg & Yunes ’14, Maselli et al ’15, Kleihaus et al ’11, ’14, . . . ) • α 0 GB : no modification to GR solution, i.e., d s 2 = d s 2 a/M = 0.7, num Kerr , Φ = const = 0 a/M = 0.7, ana a/M = 0.9, num a/M = 0.9, ana 1 a/M = 0.99, num a/M = 0.99, ana • α 1 GB : no modification to metric, but scalar hair 0.1 Φ (courtesy of Kent Yagi) 0.01 M l +1 � � M �� � Φ = r l +1 P l (cos θ ) 1 + O P l r 0.001 1 10 100 l ≥ 0 , even x / M � 1 − χ 2 − 1 + χ 2 1 − 5 χ 2 P 0 =4 α GB P 2 ∼ − 28 α GB � � M 2 χ 2 + O ( χ 6 ) M 2 χ 2 15 98 H. Witek (KCL) 6 / 16

  7. Why EdGB gravity? – musings on compact binaries ⇒ modified dynamics and extra polarizations, e.g, • induced scalar dipole & quadrupolar radiation ⇒ increased inspiral rate • shift in binding energy ⇒ correction to orbital phase • change in ISCO: r ISCO / M ∼ 6 − 16297 9720 α 2 GB • spin can exceed Kerr bound (Kleihaus et al ’11) • . . . (www.eventhorizontelescope.org) H. Witek (KCL) 7 / 16

  8. Setting the stage for numerical evolutions Mathematical considerations: • field equations are second order ⇒ potential for well-posed PDE system? • in generalized harmonic gauge only weakly hyperbolic (Papallo & Reall ’17, Papallo ’17) • extension to Baumgarte-Shapiro-Shibata-Nakamura-type formulation + puncture-type gauge underway (work in progress with L. Gualtieri and P. Pani) • good chances as effective field theory (Choquet-Bruhat ’88, Delsate et al ’14) g µν = g (0) µν + ǫ g (1) µν + O ( ǫ 2 ), Φ = ǫ Φ (1) + O ( ǫ 2 ) and take ǫ ∼ α GB • G (0) α 0 GB : ab =0 , � Φ (1) = −R (0) GB = R 2 − 4 R ab R ab + R abcd R abcd R (0) α 1 GB : GB , ⇒ in practise for up to α 1 GB : evolve scalar in a GR background H. Witek (KCL) 8 / 16

  9. BH binaries in EdGB – setting the stage Time evolution in 3+1 dimensions, code based on Einstein Toolkit Initial data: • α 0 GB : non-spinning BH binary with x ± = ± 5 ( ∼ 8 − 10 orbits before merger), mass-ratios q = m 1 / m 2 = 1 , 1 / 2 , 1 / 4 • α 1 GB : zero initial scalar field or superposition of solutions • HERE: q = 1 and Φ t =0 = 0 , Π t =0 = −L n Φ = 0 Scalar field evolution – equatorial plane H. Witek (KCL) 9 / 16

  10. Results Scalar radiation measured at r ex / M = 40 0.6 Φ 22 0.4 0.2 r ex Φ 22 0 -0.2 -0.4 0.08 -0.6 Φ 44 0.06 0.04 r ex Φ 44 0.02 0 -0.02 -0.04 -0.06 -0.08 0.08 Ψ 4,22 0.06 0.04 r ex Ψ 4,22 0.02 0 -0.02 -0.04 -0.06 -0.08 0 200 400 600 800 1000 1200 (t - r ex - t junk ) / M • excitation of scalar radiation in l = m = 2 and l = m = 4 sourced by curvature / orbital dynamics • post-merger ringdown H. Witek (KCL) 10 / 16

  11. Results Scalar field waveforms with m = 0, measured at r ex / M = 40 25 Φ 00 20 r ex Φ 00 15 10 5 20 Φ 20 0 -20 -40 ex Φ 20 -60 -80 r 3 -100 -120 -140 0 200 400 600 800 1000 1200 (t - r ex - t junk ) / M • non-trivial scalar excitation • post merger: approach to analytic solution M 3 M P 0 ∼ 2 α GB P 2 ∼ − α GB M 2 χ 2 Φ ∼P 0 r + P 2 r 3 Y 20 M 2 H. Witek (KCL) 11 / 16

  12. Summary and Outlook Take home message: • study black holes in Einstein-dilaton Gauss-Bonnet theory • motivated from “stringy” models • black holes have hair – fundamentally different from GR • first nonlinear study of BH binaries (up to O ( α (1) GB )) → burst of scalar radiation excited in late inspiral & merger → settling down to hairy, rotating solution at late times Outlook • extension to O ( α 2 GB ) within EFT approach → include deformation of metric and GW signal • modelling as full theory? PDE structure within BSSN+puncture gauge approach • construct inspiral-merger-ringdown signal for GW searches Thank you! acknowledgements: H. Witek (KCL) 12 / 16

  13. H. Witek (KCL) 13 / 16

  14. Constraints on EdGB • theoretical constraint: � α GB � � 1 • static BHs only exist for � � √ M 2 2 3 (Kanti et al ’95, Sotiriou & Zhou ’14) • strongest observational constraint: • orbital decay of x-ray binaries ˙ L with ˙ ˙ L ∼ ˙ 5 α 2 GB v − 2 � P L � P ∼ L GR 1 + 96 ¯ � ⇒ | α GB | � 2 km (Yagi ’12) • What can GWs do for us? Not much, actually • due to degeneracies between spin magnitudes, component masses & coupling • modification of GW phase & amplitude not present | α GB | � δ 1 / 4 ( r 12 / m ) − 1 / 4 � in noise ⇒ • with δ ∼ 4%, r 12 = 2 m , m ∼ 30 M ⊙ , χ ∼ 0: � | α GB | � 23 km H. Witek (KCL) 14 / 16

  15. Testing strong field gravity (LSC/LVC ’16, ’17) Consistency tests • consistent parameter estimation from inspiral & inspiral-merger-ringdown • post-peak data consistent with QNM Null tests • substract best GR fit from data: remainder consistent with noise • constraints on parametrized post-Newtonian Modified dispersion relations E 2 = p 2 c 2 + Ap α c α • constraint on graviton Compton wavelength: λ G ≥ 1 . 6 · 10 13 km ( m G � 7 . 7 · 10 − 23 eV / c 2 ) back H. Witek (KCL) 15 / 16

  16. Future prospects – multiband GW astronomy • extreme mass ratio inspirals • multipolar structure • Kerr nature • post-merger of massive binaries • ringdown modes • tests of “no-hair” theorems (LISA consortium ’17) testing for • additional radiation channels • propagation properties • presence of light fundamental fields (Sesana ’16; see also Vitale ’16) H. Witek (KCL) 16 / 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend