biped stabilization by linear feedback of the variable
play

Biped Stabilization by Linear Feedback of the Variable-Height - PowerPoint PPT Presentation

Biped Stabilization by Linear Feedback of the Variable-Height Inverted Pendulum Model Stphane Caron MayAugust 2020 IEEE Virtual Conference on Robotics and Automation 1 height variation strategy F ext F ext Rest position Ankle strategy


  1. Biped Stabilization by Linear Feedback of the Variable-Height Inverted Pendulum Model Stéphane Caron May–August 2020 IEEE Virtual Conference on Robotics and Automation

  2. 1 height variation strategy F ext F ext Rest position Ankle strategy Height variation strategy

  3. in this video Idea : • Divergent Component of Motion goes 4D Techniques : • Variation dynamics around reference trajectory • Least-squares pole placement 2

  4. 1 height variation strategy 1. Twan Koolen , Michael Posa et Russ Tedrake . « Balance control using center of mass 3 F ext F ext Rest position Ankle strategy Height variation strategy height variation : Limitations imposed by unilateral contact ». In : Humanoids 2016 .

  5. pendulum models Linear Inverted Pendulum Variable-Height Inverted Pendulum 4 • Model : ¨ c = λ ( c − z ) + g • Model : ¨ c = ω 2 ( c − z ) + g • Inputs : u = z ∈ R 2 • Inputs : u = [ z λ ] ∈ R 3

  6. balance control Linear Inverted Pendulum Variable-Height Inverted Pendulum • Control : nonlinear MPC [1] 5 • State : ξ = c + ˙ c /ω ∈ R 3 • State : [ c ˙ c ] ∈ R 6 • Control : z = − k ( ξ d − ξ )

  7. divergent component of motion 3D DCM 2. Johannes Englsberger , Christian Ott et Alin Albu-Schäffer . « Three-dimensional bipe- 2 Viability Convergent dynamics c Divergent dynamics 6 ˙ ξ := c + ω ˙ ξ = ω ( ξ − z ) ˙ c = ω ( ξ − c ) Diverges ifg ξ / ∈ support ( z ) dal walking control based on divergent component of motion ». In : IEEE T-RO (2015).

  8. pole placement Derive feedback et Fumio Kanehiro . « Balance control based on capture point error compensation for biped walking 3. Mitsuharu Morisawa , Nobuyuki Kita , Shin’ichiro Nakaoka , Kenji Kaneko , Shuuji Kajita 3 7 Desired error dynamics Error dynamics Tracking error : ∆ ξ := ξ − ξ d ∆ ˙ ξ = ω (∆ ξ − ∆ z ) ξ ∗ = − k p ∆ ξ ∆ ˙ ∆ z ∗ = arg min ∥ ∆ ξ ∗ − ∆ ξ ∥ ∆ z [ ] = − 1 + k p ∆ ξ ω on uneven terrain ». In : Humanoids 2012 .

  9. time-varying dcm Model Time-varying DCM c 4 4. Michael A. Hopkins , Dennis W. Hong et Alexander Leonessa . « Humanoid locomotion on 8 ¨ c = λ ( c − z ) + g Pre-defjning c z ( t ) → λ ( t ) makes system LTV : ˙ ξ = c + ω ( t ) ω = ω 2 − λ . with the Riccati equation ˙ uneven terrain using the time-varying Divergent Component of Motion ». In : Humanoids 2014 .

  10. dcm in space and time Viability 5. Stéphane Caron , Adrien Escande , Leonardo Lanari et Bastien Mallein . « Capturability- 5 Viability Convergent dynamics Divergent dynamics Cartesian space Phase space Input 9 Divergent dynamics Input z Convergent dynamics λ ˙ ω = ω 2 − λ ξ = ω ( ξ − z ) ˙ ˙ ζ = ω ( z − ζ ) γ = λ − γ 2 ˙ Diverges ifg ω 2 / Diverges ifg ξ / ∈ support ( z ) ∈ [ λ min , λ max ] based Pattern Generation for Walking with Variable Height ». In : IEEE T-RO (2020).

  11. interpretation 10

  12. 4d dcm for the vhip 0 0 g z 0 0 Divergent component of motion 0 11 Divergent dynamics x = [ ξ ω ] ∈ R 4 : Cartesian 3D DCM ξ + natural frequency ω [ ˙ ] [ ] [ ] [ ] [ ] ξ λ I 3 λ I 3 ˙ x = = 1 x − 1 + 1 ω ω ω ω ˙ ω 2 ω λ

  13. 4d dcm for the vhip 0 0 1 0 1 Tracking error dynamics Take its linearized error dynamics ( a.k.a. variation dynamics) : 0 g Divergent component of motion z 0 0 11 0 Divergent dynamics x = [ ξ ω ] ∈ R 4 : Cartesian 3D DCM ξ + natural frequency ω [ ˙ ] [ ] [ ] [ ] [ ] ξ λ I 3 λ I 3 ˙ x = = 1 x − 1 + 1 ω ˙ ω ω 2 ω ω λ ω ( ξ d − z d ) [ ] [ ] [ ] λ d I 3 − ¨ c d /ω d λ d I 3 ∆ z ∆˙ x = ∆ x − 2 ( ω d ) 2 ω d ∆ λ ω d ω d Linear system : ∆˙ x = A ∆ x + B ∆ u .

  14. least-squares pole placement Derive feedback Subject to : Error dynamics 12 Desired error dynamics ∆˙ x = A ∆ x + B ∆ u x ∗ = − k p ∆ x ∆˙ Minimize : ∥ ∆˙ x − ∆˙ x ∗ ∥ 2 • Linearized dynamics : ∆˙ x = A ∆ x + B ∆ u • ZMP support area : C ( z d + ∆ z ) ≤ d • Reaction force : λ min ≤ λ d + ∆ λ ≤ λ max • Kinematics : h min ≤ ξ d z + ∆ ξ z ≤ h max

  15. behavior https://github.com/stephane-caron/pymanoid/blob/master/examples/vhip_stabilization.py 13

  16. controller adjusts the dcm Previously, the DCM was a measured state : Now, the DCM is an output that can be adjusted : 14 – DCM Pole placement + Constrained – Pole Placement + The controller can vary ω (height) to maintain ξ ∈ support ( z ) .

  17. force control https://github.com/stephane-caron/vhip_walking_controller 15 LIP tracking VHIP tracking

  18. what have we seen ? Idea : • Divergent Component of Motion goes 4D Techniques : • Variation dynamics around reference trajectory • Least-squares pole placement To go further • Link with exponential dichotomies (Coppel, 1967) : https://scaron.info/talks/jrl-2019.html 16

  19. thanks ! Thank you for your attention ! 17

  20. references i [1] Shuuji Kajita et Fumio Kanehiro . « Balance control based on capture point error Mitsuharu Morisawa , Nobuyuki Kita , Shin’ichiro Nakaoka , Kenji Kaneko , [5] Twan Koolen , Michael Posa et Russ Tedrake . « Balance control using center of mass [4] 2014 . 18 Michael A. Hopkins , Dennis W. Hong et Alexander Leonessa . « Humanoid locomotion on [3] Johannes Englsberger , Christian Ott et Alin Albu-Schäffer . « Three-dimensional [2] T-RO (2020). Stéphane Caron , Adrien Escande , Leonardo Lanari et Bastien Mallein . « Capturability-based Pattern Generation for Walking with Variable Height ». In : IEEE bipedal walking control based on divergent component of motion ». In : IEEE T-RO (2015). uneven terrain using the time-varying Divergent Component of Motion ». In : Humanoids height variation : Limitations imposed by unilateral contact ». In : Humanoids 2016 . compensation for biped walking on uneven terrain ». In : Humanoids 2012 .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend