bimodules over simple finite dimensional jordan
play

BIMODULES OVER SIMPLE FINITE-DIMENSIONAL JORDAN SUPERALGEBRAS - PDF document

BIMODULES OVER SIMPLE FINITE-DIMENSIONAL JORDAN SUPERALGEBRAS Consuelo Mart nez L opez Workshop on Nonassociative Algebras Toronto, 12-14 May 2005 SUPERALGEBRA : A = A 0 + A 1 , A i A j A i + j a Z/ 2 Z -graded


  1. BIMODULES OVER SIMPLE FINITE-DIMENSIONAL JORDAN SUPERALGEBRAS Consuelo Mart´ ınez L´ opez Workshop on Nonassociative Algebras Toronto, 12-14 May 2005

  2. SUPERALGEBRA : A = A ¯ 0 + A ¯ 1 , A ¯ i · A ¯ j ⊆ A ¯ i + j a Z/ 2 Z -graded algebra EX. V vector space of countable dimension, G ( V ) = G ( V ) ¯ 0 + G ( V ) ¯ 1 Grassmann algebra over V , G ( A ) = A ¯ 0 ⊗ G ( V ) ¯ 0 + A ¯ 1 ⊗ G ( V ) ¯ 1 ≤ A ⊗ G ( V ) Grassmann enveloping algebra of A V a variety of algebras (associative, Lie, Jordan,...) DEF. A = A ¯ 0 + A ¯ 1 is a V -superalgebra if G ( A ) ∈ V . J = J ¯ 0 + J ¯ 1 is a Jordan superalgebra if it satisfies SJ1. Supercommutativity a · b = ( − 1) | a || b | b · a , SJ2. Super Jordan identity ( a · b ) · ( c · d ) + ( − 1) | b || c | ( a · c ) · ( b · d )+ ( − 1) | b || d | + | c || d | ( a · d ) · ( b · c ) = (( a · b ) · c ) · d + ( − 1) | c || d | + | b || c (( a · d ) · c ) · b + ( − 1) | a || b | + | a || c | + | a || d | + | c || d | (( b · d ) · c ) · a .

  3. JORDAN SUPERALGEBRAS A = A ¯ 0 + A ¯ 1 associative superalgebra A (+) = ( A, a · b = 1 2 ( ab +( − 1) | a || b | ba ) Jordan super- algebra 1 ≤ A (+) special . Otherwise excep- J = J ¯ 0 + J ¯ tional (A) A (+) , A = M m + n ( F ) full linear superalgebra � � a b (Q) A (+) , A = { | a, b ∈ M n ( F ) } b a If ⋆ : A → A is an involution : ( a ⋆ ) ⋆ = a , ( ab ) ⋆ = ( − 1) | a || b | b ⋆ a ⋆ . H ( A, ⋆ ) = { a ∈ A | a ⋆ = a } ≤ A (+) � � I m 0 (BC) M m +2 n ( F ), Q = , 0 S 2 n 0 1 . . .   − 1 0 . . .   S 2 n = . . . . .     . . . 0 1   . . . − 1 0 � � � a T − c T � a b → Q − 1 ⋆ : Q , a ∈ M m ( F ), b T d T c d d ∈ M 2 n ( F ), H ( A, ⋆ ) = osp m , 2n ( F ).

  4. � � � d T − b T � a b (P) A = M n + n ( F ), ⋆ : → , c T a T c d � � a b | a, b, c ∈ M n ( F ) , b T = − b, H ( A, ⋆ ) = { a T c c T = c } . (D) A Superalgebra of a superform V = V ¯ 0 + V ¯ 1 , <, > : V × V → F a supersymmetric bilinear form J = F 1 + V = ( F 1 + V ¯ 0 ) + V ¯ 1 , ( α 1 + v )( β 1 + w ) = ( αβ + < v, w > )1 + ( αw + βv ). ( D t ) J t = ( Fe 1 + Fe 2 ) + ( Fx + Fy ), t � = 0 i = e i , e 1 e 2 = 0 , e i x = 1 2 x, e i y = 1 e 2 2 y, [ x, y ] = e 1 + te 2 . (J) All simple Jordan algebras

  5. (F) The 10-dimensional exceptional Kac superalgebra K 10 = [( Fe 1 + � 4 i =1 Fv i )+ Fe 2 ]+( � 2 i =1 Fx i + Fy i ) e 2 i = e i , e 1 e 2 = 0 , e 1 v i = v i , e 2 v i = 0 , v 1 v 2 = 2 e 1 = v 3 v 4 , e i x j = 1 e i y j = 1 2 x j , 2 y j , i, j = 1 , 2 y 1 v 1 = x 2 , y 2 v 1 = − x 1 , x 1 v 2 = − y 2 , x 2 v 2 = y 1 , x 2 v 3 = x 1 , y 1 v 3 = y 2 , x 1 v 4 = x 2 , y 2 v 4 = y 1 , [ x i , y i ] = e 1 − 3 e 2 , [ x 1 , x 2 ] = v 1 , [ y 1 , y 2 ] = v 2 , [ x 1 , y 2 ] = v 3 , [ x 2 , y 1 ] = v 4 . (K) The 3-dimensional Kaplansky superalgebra e 2 = e, ex = 1 K 3 = Fe + ( Fx + Fy ) , 2 x, ey = 1 2 y, [ x, y ] = e . Theorem. (Kac 77, Kantor 89) A simple finite dimen- sional Jordan superalgebra over an algebraically closed field of zero characteristic is isomorphic to one of the su- peralgebras A, BC, D, P, Q, D t , F, K, J listed above or to a superalgebra obtained by the Kantor-double process

  6. Theorem. (Racine, Zelmanov, J. of Algebra 270, 2003) Every simple Jordan superalgebra over an algebraically closed field F , ch F = p > 2 , with its even part semisim- ple is isomorphic to one of the superalgebras mentioned above + Some additional examples in char 3 Jordan Superalgebras defined by Brackets Γ = Γ ¯ 0 + Γ ¯ 1 an associative commutative superalgebra { , } : Γ × Γ → Γ a Poisson bracket if { Γ ¯ i , Γ ¯ j } ⊆ Γ ¯ i + j and (1) (Γ , { , } ) is a Lie superalgebra, (2) { ab, c } = a { b, c } +( − 1) | b || c | { a, c } b ( Leibniz iden- tity ) Kantor Double Superalgebra ( bx ) a = ( − 1) | a | ( ba ) x , J = Γ + Γ x , a ( bx ) = ( ab ) x , ( ax )( bx ) = ( − 1) | b | { a, b } , J ¯ 0 = Γ ¯ 0 + Γ ¯ 1 x , J ¯ 1 = Γ ¯ 1 + Γ ¯ 0 x . Theorem. (Kantor 1992) Let { , } be a Poisson bracket = ⇒ J = Γ + Γ x is a Jordan superalgebra. Kantor superalgebra Γ = Grassman algebra on ξ 1 , . . . , ξ n 1 , { f, g } = � n i =1 ( − 1) | f | ∂f ∂g Γ = Γ ¯ 0 + Γ ¯ ∂ξ i ∂ξ i � n = 1 J ≃ D ( − 1) J = Γ + Γ x n ≥ 2 J ¯ is not semisimple 0

  7. CHENG-KAC JORDAN SUPERALGEBRAS Z unital associative commutative algebra, d : Z → Z a derivation, 0 = Z + � 3 CK ( Z, d ) = J ¯ 0 + J ¯ 1 , J ¯ i =1 w i Z , J ¯ 1 = xZ + � 3 i =1 x i Z free Z-modules of rank 4. Even part w i w j = 0 , i � = j, w 2 1 = w 2 2 = 1 , w 2 3 = − 1, Notation: x i × i = 0 , x 1 × 2 = − x 2 × 1 = x 3 x 1 × 3 = − x 3 × 1 = x 2 , − x 2 × 3 = x 3 × 2 = x 1 . Module action f, g ∈ Z g w j g xf x ( fg ) x j ( fg d ) x i fx i ( fg ) x i × j ( fg ) Bracket on M xg x j g xf f d g − fg d − w j ( fg ) x i f w i ( fg ) 0 CK ( Z, d ) is simple ⇐ ⇒ Z does not contain proper d-invariant ideals.

  8. B ( m ) = F [ a 1 , . . . , a m | a p i = 0] B ( m , n ) = B ( m ) ⊗ G ( n ) G ( n ) = < 1 , ξ 1 , . . . , ξ n > Theorem. (M., Zelmanov, J. of Algebra 236, 2001) Let J = J ¯ 0 + J ¯ 1 be a finite dimensional simple unital Jordan superalgebra over an algebraically closed field F , ch F = p > 2, J ¯ 0 not semisimple. Then J ≃ B ( m , n ) + B ( m , n ) x a Kantor double or J ≃ CK ( B ( m ) , d ) . SPECIALITY King, McCrimmon (J. Algebra 149, 1995) - The Kantor Double of a bracket of vector field type ( { a, b } = a ′ b − ab ′ ′ a derivation) is special. - The Kantor Double of { f, g } = ∂f ∂g ∂y − ∂f ∂g ∂x on ∂x ∂y F [ x, y ] is exceptional. Shestakov (1993) - A Kantor Double of Poisson bracket <, > : Γ × Γ → Γ is special iff << Γ , Γ >, Γ > = (0). - A Kantor Double of a Poisson bracket is i-special (homomorphic image of a special superalgebra)

  9. Theorem. (M., Shestakov, Zelmanov) A Kantor Dou- ble of a Jordan bracket is i-special. Assumption: J = Γ + Γ x does not contain � = (0) nilpo- tent ideals - If Γ = Γ ¯ 0 then J is special iff <, > is of vector field type. - If Γ ¯ 1 Γ ¯ 1 � = (0) (at least 2 Grassmann variables) then J is exceptional. - If Γ = Γ ¯ 0 + Γ ¯ 0 ξ 1 , < Γ ¯ 0 , ξ 1 > = (0) , < ξ 1 , ξ 1 > = − 1 then J is special iff <, > : Γ ¯ 0 × Γ ¯ 0 → Γ ¯ 0 is of vector field type. Theorem. (M., Shestakov, Zelmanov) The Cheng-Kac superalgebra CK ( Z, d ) is special The embedding extends McCrimmon embedding for vector field type brackets. W = < R ( a ) , a ∈ Z, d > - differential operators on Z R = R ¯ 0 + R ¯ 1 = M 4 × 4 ( W )

  10. Let J be a special Jordan superalgebra. A specialization u : J − → U into an associative algebra U is said to be universal if U = < u ( J ) > and for an arbitrary specialization ϕ : J → A there exists a homomorphism of associative algebras ξ : U → A such that ϕ = ξ · u . The algebra U is called the universal associative enveloping algebra of J . An arbitrary special Jordan superalgebra contains a unique universal specialization u : J → U . U is equipped with a superinvolution * having all elements from u ( J ) fixed, i.e., u ( J ) ⊆ H ( U, ∗ ). We call a special Jordan superalgebra reflexive if u ( J ) = H ( U, ∗ ). Theorem. U ( M (+) m,n ( F )) ≃ M m,n ( F ) ⊕ M m,n ( F ) for ( m, n ) � = (1 , 1) ; U ( Q (+) ( n )) = Q ( n ) ⊕ Q ( n ) , n ≥ 2 ; U ( osp ( m, n )) ≃ M m,n ( F ) , ( m, n ) � = (1 , 2) ; U ( P ( n )) ≃ M n,n ( F ) , n ≥ 3 . Theorem. The embedding σ of the Cheng-Kac super- algebra is universal, that is, U ( CK ( Z, D )) ∼ = M 2 , 2 ( W ) . The restriction of the embedding u (see above) to P (2) is a universal specialization; U ( P (2)) ≃ M 2 , 2 ( F [ t ]) , where F [ t ] is a polynomial algebra in one variable.

  11. The Jordan superalgebra of a superform Let V = V ¯ 0 + V ¯ 1 be a Z/ 2 Z -graded vector space, dim V ¯ 0 = m, dimV ¯ 1 = 2 m ; let <, > : V × V → F be a super- symmetric bilinear form on V . The universal associative enveloping algebra of the Jordan algebra F 1 + V ¯ 0 is the Clifford algebra Cl ( m ) = < 1 , e 1 , . . . , e m | e i e j + e j e i = 0 , i � = j, e 2 i = 1 > . Consider the Weyl algebra W n = < 1 , x i , y i , 1 ≤ i ≤ n | [ x i , y j ] = δ ij , [ x i , x j ] = [ y i , y j ] = 0 > . Assuming x i , y i , 1 ≤ i ≤ n to be odd, we make W n a superalgebra. The universal associative enveloping algebra of F 1+ V is isomorphic to the (super)tensor product Cl ( m ) ⊗ F W n . Specializations of M 1 , 1 ( F ) � � A M 12 Theorem. U ( M 1 , 1 ( F )) ≃ . The map- M 21 A ping � � � α 12 + α 21 a − 1 z 2 � α 11 α 12 α 11 u : → α 21 α 22 α 12 z 1 + α 21 a α 22 is a universal specialization. Here a is root of the equation a 2 + a − z 1 z 2 = 0, A = F [ z 1 , z 2 ]+ F [ z 1 , z 2 ] a is a subring of K a quadratic exten- sion of F ( z 1 , z 2 ) generated by a and M 12 = F [ z 1 , z 2 ] + F [ z 1 , z 2 ] a − 1 z 2 , M 21 = F [ z 1 , z 2 ] z 1 + F [ z 1 , z 2 ] a are sub- spaces of K .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend