retrocells
play

Retrocells Robert Par e CT2019 Edinburgh, Scotland July 10, 2019 - PowerPoint PPT Presentation

Retrocells Robert Par e CT2019 Edinburgh, Scotland July 10, 2019 Robert Par e (Dalhousie University) Retrocells July 10, 2019 1 / 33 Bimodules The bicategory B im has rings R , S , T , . . . as objects, bimodules


  1. Retrocells Robert Par´ e CT2019 Edinburgh, Scotland July 10, 2019 Robert Par´ e (Dalhousie University) Retrocells July 10, 2019 1 / 33

  2. � � � Bimodules • The bicategory B im has rings R , S , T , . . . as objects, bimodules � S as 1-cells, and S - R -linear maps as 2-cells M : R • Composition is ⊗ S S M • N • R R T T • N ⊗ S M • B im is biclosed, ⊗ has right adjoints in each variable � N � T P M � P N ⊗ S M � P ⊘ R M N N � T P = Hom T ( N , P ), P ⊘ R M = Hom R ( M , P ) Robert Par´ e (Dalhousie University) Retrocells July 10, 2019 2 / 33

  3. Biclosed Many bicategories are biclosed • B im : Rings, bimodules, linear maps • P rof : Categories, profunctors, natural transformations • V - P rof : V − with colimits preserved by ⊗ − biclosed − limits • S pan ( A ) : A with pullbacks and locally cartesian closed Robert Par´ e (Dalhousie University) Retrocells July 10, 2019 3 / 33

  4. Scandal Good bicategories (all of the above) are the vertical part of naturally occurring double categories: R ing , C at , V - C at , S pan A But the internal homs ⊘ and � are not double functors! Robert Par´ e (Dalhousie University) Retrocells July 10, 2019 4 / 33

  5. � � � Double categories • A double category is a “category with two sorts of morphisms” • Example: R ing f � S R R S α � M • • N R ′ R ′ S ′ S ′ f ′ Robert Par´ e (Dalhousie University) Retrocells July 10, 2019 5 / 33

  6. � � � C at • Example: C at F � B A A B P : A op × C � Set Q : B op × D � Set φ � P • • Q � Q ( F − , G =) φ : P ( − , =) C C D D G Robert Par´ e (Dalhousie University) Retrocells July 10, 2019 6 / 33

  7. � � � � � � � S pan • Example: S pan A f A A A B B B σ 0 τ 0 h S S S T T T τ 1 σ 1 C C C D D D g Robert Par´ e (Dalhousie University) Retrocells July 10, 2019 7 / 33

  8. � � Left homs • A has left homs if y • ( ) has a right adjoint y \ • ( ) in V ert A x � B A A B • � z y • x in V ert A • • y � y \ x • z z C C Mike Shulman, “Framed bicategories and monoidal fibrations” (TAC 2008) Roald Koudenburg, “On pointwise Kan extensions in double categories” (TAC 2014) Robert Par´ e (Dalhousie University) Retrocells July 10, 2019 8 / 33

  9. Respecting boundaries • y \ • z is covariant in z and contravariant in y β \ • γ � y ′ \ β γ y ′ � y , z � z ′ • z ′ y \ • z � • Robert Par´ e (Dalhousie University) Retrocells July 10, 2019 9 / 33

  10. � � � � � � Respecting boundaries • y \ • z is covariant in z and contravariant in y β \ • γ � y ′ \ β γ y ′ � y , z � z ′ • z ′ y \ • z � • � y • We have evaluation ǫ : y • ( y \ • z ) A A A A A A A A A A A A A A A A y \ • z • y \ • z • = γ � ǫ � B B B B B B B B B B B B • z • z ′ β � y y ′ • • C C C C C C C C C C C C C C C C � y ′ \ • z ′ y \ • z Robert Par´ e (Dalhousie University) Retrocells July 10, 2019 9 / 33

  11. � � � � � � � Respecting boundaries • y \ • z is covariant in z and contravariant in y β \ • γ � y ′ \ β γ y ′ � y , z � z ′ • z ′ y \ • z � • � y • We have evaluation ǫ : y • ( y \ • z ) a � A ′ A ′ A A A A A A A A A A A A • y \ • z ? γ � b � B ǫ � B ′ B ′ B ′ B ′ B B B B B B B • z • z ′ β � y ′ y • • C ′ C ′ C ′′ C ′′ C C C C C C C C C C C C c c ′ ? ? � y ′ \ • z ′ y \ • z Robert Par´ e (Dalhousie University) Retrocells July 10, 2019 10 / 33

  12. � � � � � � � � � � � � � Globular universal ∀ A A A A A A A A ∃ ! A A A A β � x x • y \ • z • • α � B B B B • z B B B B y • C C C C C C C C s.t. A A A A A A A A A A A A A A A A β � x • y \ • z x • • ǫ � α � B B B B B B B B B B • z = B B B B • z y • y y = • • C C C C C C C C C C C C C C C C C C C C Robert Par´ e (Dalhousie University) Retrocells July 10, 2019 11 / 33

  13. � � � � � � � � � � � � � More universal f f � A � A A ′ A ′ A ′ A ′ A ′ A ′ ∀ A A A ∃ ! A β � x x • y \ • z • • α � B B B B • z B B B B y • C C C C C C C C s.t. f f � A � A A ′ A ′ A ′ A ′ A ′ A ′ A A A A A A A A β � x • y \ • z x • • ǫ � α � B B B B B B B B B B • z = B B B B • z y • y y = • • C C C C C C C C C C C C C C C C C C C C Robert Par´ e (Dalhousie University) Retrocells July 10, 2019 12 / 33

  14. � � � � Strong universality Strong universal property: f � A f � A A ′ A ′ A ′ A ′ A A α � β � • • z • • y • x x y \ • z C C B B Robert Par´ e (Dalhousie University) Retrocells July 10, 2019 13 / 33

  15. � � � � � � � � � � � � � � � � � Companions � B is a companion of • In a double category A , a vertical arrow v : A • � B if there are binding cells α and β such that a horizontal arrow f : A 1 A � A f � B f � B A A A A A B A A B β � id f � α � id A • v • id B = id A • id B βα = id f • • A A B B B B B B A A B B 1 A f f 1 A � A A A A 1 A α � � A id A • v A A A • 1 v � � B A A A A B B B = v • v β • α = 1 v • f β � B B B B v • id B • 1 B B B B B 1 A Robert Par´ e (Dalhousie University) Retrocells July 10, 2019 14 / 33

  16. � � � � � � � Properties • Companions, when they exist, are unique up to globular isomorphism We make a choice of companion f ∗ and, following Ronnie Brown, denote the binding cells by corner brackets • We have (1 A ) ∗ ∼ = id A and ( gf ) ∗ ∼ = g ∗ f ∗ • A A A A � A A A A • f ∗ f � B f � B A A B A A A A B B B v � • • f ∗ φ � φ � ψ � �− → = C C C C B B B B v � • w v � • w • • g � D g ∗ � C C g � D D C C C C D D D • w • g ∗ � D D D D • � D D D D gives a bijection between φ ’s and ψ ’s Robert Par´ e (Dalhousie University) Retrocells July 10, 2019 15 / 33

  17. � � � � � � � � � � � � � � � � � Conjoints There is a dual notion of conjoint f ∗ 1 B f � B � B f � B A A B B B B A A B ψ � χ � id f � id A • id B = id A • id B χψ = id f • • f ∗ • A A A A A A B B A A B B 1 A f f 1 B � B B B B 1 B χ � � B B B B f ∗ • id B • 1 f ∗ � A A A A B B B B = ψ • χ = 1 f ∗ f ∗ • • f ∗ f ψ � A A A A id A • f ∗ • 1 A A A A A 1 A Robert Par´ e (Dalhousie University) Retrocells July 10, 2019 16 / 33

  18. � � � � Examples � S • In R ing , f : R f ∗ is S considered as an S - R bimodule f ∗ is S considered as an R - S bimodule � B • In C at , F : A F ∗ = B ( F − , =) and F ∗ = B ( − , F =) � B • In S pan ( A ), f : A A A B B 1 A f and f ∗ is A f ∗ is A A A f 1 A B B A A Robert Par´ e (Dalhousie University) Retrocells July 10, 2019 17 / 33

  19. What strong means • The strong universal property is equivalent to the globular one plus the stability property • ( z • f ∗ ) ∼ y \ = ( y \ • z ) • f ∗ • If every horizontal arrow has a conjoint, then the strong universal property is equivalent to the globular one Robert Par´ e (Dalhousie University) Retrocells July 10, 2019 18 / 33

  20. � � � � � � Left duals • Suppose A left closed � B we can define its left dual • v = v \ � A • For v : A • id B : B • • We have • id B ∼ = id B • v • • w � • ( w • v ) So perhaps we get a lax normal A co � A g f � C � D A A C B B D ? α � • α � v • w � • v • • w • • B B D D A A C C g f Robert Par´ e (Dalhousie University) Retrocells July 10, 2019 19 / 33

  21. � � � � � � � Retrocells A retrocell A A A A f � C A A C • v f ∗ • � α α � v • w is a cell C C C C B B B B in A • • g ∗ B B D D w • g D D D D Robert Par´ e (Dalhousie University) Retrocells July 10, 2019 20 / 33

  22. � � � � � � � � Quintets • Example: In Q ( A ), a cell is a quintet f � B A A B h k C C D D g and a retrocell is a coquintet f � B A A B h k C C C C g Robert Par´ e (Dalhousie University) Retrocells July 10, 2019 21 / 33

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend