bijgevoegde stelling temporal dependencies for natural
play

bijgevoegde stelling Temporal dependencies for natural events - PowerPoint PPT Presentation

Arthur CHARPENTIER - PhD Thesis Defense - Bijgevoegde stelling. Arthur Charpentier bijgevoegde stelling Temporal dependencies for natural events Promoters: Jan Beirlant (KUL) & Michel Denuit (UCL) Katholieke Universiteit Leuven , June 2006. 1


  1. Arthur CHARPENTIER - PhD Thesis Defense - Bijgevoegde stelling. Arthur Charpentier bijgevoegde stelling Temporal dependencies for natural events Promoters: Jan Beirlant (KUL) & Michel Denuit (UCL) Katholieke Universiteit Leuven , June 2006. 1

  2. Arthur CHARPENTIER - PhD Thesis Defense - Bijgevoegde stelling. Modeling daily windspeed and temperature Consider some stationary time series ( X t ) t ∈ Z , and define γ X ( h ) = cov ( X t , X t − h ) and its Fourier transform f X ( ω ) = 1 � γ X ( h ) cos( ωh ) . 2 π h ∈ Z Define autocorrelations as ρ X ( h ) = γ X ( h ) /γ X (0) . Long rang dependence: � h ∈ Z | ρ X ( h ) | = ∞ . Haslett & Rasftery (1989), ARFIMA processes for windspeed (1 − L ) d Φ( L ) X t = Θ( L ) ε t , where d ∈ (0 , 1) . GARMA processes, Hosking (1981, 1984), (1 − 2 uL + L 2 ) − λ Φ( L ) X t = Θ( L ) ε t , where λ ∈ (0 , 1 / 2) , | u | < 1 . ω = cos − 1 ( u ) is related to the seasonality of the series (e.g. ω = 2 π/ 365 ). σ 2 = 4 . 47 2 . For daily windpspeed ˆ λ = 0 . 126 and ˆ 2

  3. Arthur CHARPENTIER - PhD Thesis Defense - Bijgevoegde stelling. 1.0 1.0 0.8 0.8 0.6 0.6 ACF ACF 0.4 0.4 0.2 0.2 0.0 0.0 0 20 40 60 80 100 0 500 1000 1500 2000 2500 3000 Lag Lag Figure 1: Autocorrelations, daily windspeed in Ireland. 3

  4. Arthur CHARPENTIER - PhD Thesis Defense - Bijgevoegde stelling. Daily windspeed in Ireland 10 20 30 x$V1 0 1965 1970 1975 date Autocorrelation of daily time series 0.8 ACF 0.4 0.0 0 200 400 600 800 1000 Lag Series: x Smoothed Periodogram 200 spectrum 5 20 0.0 0.1 0.2 0.3 0.4 0.5 frequency bandwidth = 0.000434 Figure 2: Daily windspeed in Ireland. 4

  5. Arthur CHARPENTIER - PhD Thesis Defense - Bijgevoegde stelling. 15 knots 20 knots 25 knots 2 days GARMA 47 . 7% 8 . 5% 0 . 3% seasonal ARMA 36 . 9% 3 . 6% 0 . 0% ratio 0 . 775 0 . 421 0 . 117 3 days GARMA 46 . 3% 8 . 0% 0 . 3% seasonal ARMA 27 . 7% 1 . 4% 0 . 0% ratio 0 . 597 0 . 176 0 . 010 4 days GARMA 45 . 3% 7 . 6% 0 . 3% seasonal ARMA 20 . 6% 0 . 5% 0 . 0% ratio 0 . 454 0 . 062 0 . 001 Table 1: Probabilities to have strong wind during consecutive days. 5

  6. Arthur CHARPENTIER - PhD Thesis Defense - Bijgevoegde stelling. Minimal daily temperature in Paris (1997−2003) Maximal daily temperature in Paris (1997−2003) 220 300 200 250 Temperature in ’0.1 °C Temperature in ’0.1 °C 180 160 200 140 150 120 100 100 0 10 20 30 40 50 60 0 10 20 30 40 50 60 July and August July and August Figure 3: Daily temperature in Paris, years 1997 to 2003. 6

  7. Arthur CHARPENTIER - PhD Thesis Defense - Bijgevoegde stelling. Daily minima in Paris − detrended (in °C) Daily Minimum Temperatures in Paris 10 0 x 20 −20 0 10000 20000 30000 15 Time Autocorrelation of daily time series 10 Temperature (°C) 0.5 5 ACF −0.5 0 0 200 400 600 800 1000 Lag −5 Series: x Smoothed Periodogram −10 spectrum 100 1 1900 1920 1940 1960 1980 2000 0.0 0.1 0.2 0.3 0.4 0.5 date frequency bandwidth = 7.63e−05 Figure 4: Trend of the series, and analysis of the series of residuals. 7

  8. Arthur CHARPENTIER - PhD Thesis Defense - Bijgevoegde stelling. Daily minima in Paris − detrended (in °C) 10 x.des 0 −15 0 10000 20000 30000 Time Autocorrelation of residuals 0.8 ACF 0.4 0.0 0 20 40 60 80 100 Lag Series: x Smoothed Periodogram spectrum 20.0 0.5 0.0 0.1 0.2 0.3 0.4 0.5 frequency bandwidth = 7.63e−05 Figure 5: Residuals ( ε t ) t ∈ Z . 8

  9. Arthur CHARPENTIER - PhD Thesis Defense - Bijgevoegde stelling. QQ plot of residuals (Gaussian) QQ plot of residuals (Student) 10 10 5 5 Sample Quantiles Sample quantiles 0 0 −5 −5 −10 −10 −15 −15 −4 −2 0 2 4 −4 −2 0 2 4 Theoretical Quantiles Theoritical Quantiles Figure 6: Residuals ( ε t ) t ∈ Z , versus Gaussian and t -distribution. 9

  10. Arthur CHARPENTIER - PhD Thesis Defense - Bijgevoegde stelling. Distribution function of the period of return Distribution function of the period of return 1.0 1.0 11 consecutive days exceeding 19 degrees 4 consecutive days exceeding 24 degrees 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 GARMA + Gaussian noise GARMA + Gaussian noise ARMA + t noise ARMA + t noise 0.0 0.0 ARMA + Gaussian noise ARMA + Gaussian noise 0 50 100 150 200 0 50 100 150 200 Years before next heat wave Years before next heat wave Density of the period of return Density of the period of return GARMA + Gaussian noise GARMA + Gaussian noise 0.030 ARMA + t noise ARMA + t noise 0.030 ARMA + Gaussian noise ARMA + Gaussian noise 11 consecutive days exceeding 19 degrees 4 consecutive days exceeding 24 degrees 0.025 0.025 0.020 0.020 0.015 0.015 0.010 0.010 0.005 0.005 0.000 0.000 0 50 100 150 200 0 50 100 150 200 Years before next heat wave Years before next heat wave Figure 7: Survival distributions and densities of time before the next heat wave event (optimistic scenario). 10

  11. Arthur CHARPENTIER - PhD Thesis Defense - Bijgevoegde stelling. Distribution function of the period of return Distribution function of the period of return 1.0 1.0 11 consecutive days exceeding 19 degrees 4 consecutive days exceeding 24 degrees 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 GARMA + Gaussian noise GARMA + Gaussian noise ARMA + t noise ARMA + t noise 0.0 0.0 ARMA + Gaussian noise ARMA + Gaussian noise 0 50 100 150 200 0 50 100 150 200 Years before next heat wave Years before next heat wave Density of the period of return Density of the period of return GARMA + Gaussian noise GARMA + Gaussian noise 0.030 0.030 ARMA + t noise ARMA + t noise ARMA + Gaussian noise ARMA + Gaussian noise 11 consecutive days exceeding 19 degrees 4 consecutive days exceeding 24 degrees 0.025 0.025 0.020 0.020 0.015 0.015 0.010 0.010 0.005 0.005 0.000 0.000 0 50 100 150 200 0 50 100 150 200 Years before next heat wave Years before next heat wave Figure 8: Survival distributions and densities of time before the next heat wave event (pessimistic scenario). 11

  12. Arthur CHARPENTIER - PhD Thesis Defense - Bijgevoegde stelling. • heat wave, type (A): 11 consecutive days with temperature exceeding 19 ◦ C, short memory short memory long memory short tail noise heavy tail noise short tail noise optimistic 88 years 69 years 53 years pessimistic 79 years 54 years 37 years Table 2: Periods of return (expected value, in years) before the next heat wave similar with August 2003 (type (A)). 12

  13. Arthur CHARPENTIER - PhD Thesis Defense - Bijgevoegde stelling. • heat wave, type (B): 3 consecutive days with temperature exceeding 24 ◦ C, short memory short memory long memory short tail noise heavy tail noise short tail noise optimistic 115 years 59 years 76 years pessimistic 102 years 51 years 64 years Table 3: Periods of return (expected value, in years) before the next heat wave similar with August 2003 (type (B)). 13

  14. Arthur CHARPENTIER - PhD Thesis Defense - Bijgevoegde stelling. Modeling flood events Two classical approaches, based on annualized maxima, • Hurst (1951), long memory Gaussian process • Gumbel (1958), i.i.d. observations Gumbel distributed Based on 100 years of observations, not enough to assess if observations are, or not, independent: impact on return periods. Another idea, Todorovic & Zelenhasic (1970) and Todorovic & Rousselle : consider flood event as a marked Poisson process. Financial ACD (Autoregressive Conditional Duration) approach of Engle & Russell (1998). 14

  15. Arthur CHARPENTIER - PhD Thesis Defense - Bijgevoegde stelling. 600 observations 87 observations 1.0 1.0 0.8 0.8 0.6 0.6 autocorrelation autocorrelation 0.4 0.4 0.2 0.2 0.0 0.0 −0.2 0 5 10 15 20 25 0 5 10 15 lag lag Figure 9: Autocorrelation function of the Nile annual maxima series. 15

  16. Arthur CHARPENTIER - PhD Thesis Defense - Bijgevoegde stelling. Let X i denote observed durations ( X i = T i − T i − 1 ), and define H i = σ ( X 1 , ...., X i − 1 ) . Assume that  X i = Ψ i · ε i , where ( ε i ) i.i.d. (Exponential or Weibull)    E ( X i |H i ) = Ψ i  Ψ i = ω + � p k =1 α k X i − k + � q  k =1 β k Ψ i − k ,  i.e. max { p,q } q � � X i = ω + ( α k + β k ) − β k η i − k + η i , k =1 k =1 where η i = X i − Ψ i = X i − E ( X i |H i − 1 ) . Two duration model in Engle & Lunde (2003): time between two flood events, and duration of the flood. Marked process, with peak of the flood and volume. Distribution of residuals ( ε i ) : exponential in finance, mixed Weibull in hydrology. 16

  17. Arthur CHARPENTIER - PhD Thesis Defense - Bijgevoegde stelling. Figure 10: Two durations model 17

  18. Arthur CHARPENTIER - PhD Thesis Defense - Bijgevoegde stelling. Theoretical vs. observed volume 10000 8000 Empirical observed volume 6000 4000 2000 0 0 1000 2000 3000 4000 5000 6000 7000 Theoretical volume Figure 11: Relationship between peak, volume and duration of a flood. 18

  19. Arthur CHARPENTIER - PhD Thesis Defense - Bijgevoegde stelling. density(x = ttt) 0.6 0.5 0.4 Density 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 7 N = 243 Bandwidth = 0.3112 Figure 12: Kernel density estimation of residuals 19

  20. Arthur CHARPENTIER - PhD Thesis Defense - Bijgevoegde stelling. 1.0 0.8 0.6 donnees 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 simulation Figure 13: Empirical distribution function of the data vs. Weibull mixture. 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend