bijective enumeration of permutations starting with a
play

Bijective enumeration of permutations starting with a longest - PDF document

Bijective enumeration of permutations starting with a longest increasing subsequence Greta Panova Harvard FPSAC 2010 The Main Objects of Interest Definition n , k = { w S n | w 1 < w 2 < < w n k , is( w ) = n k


  1. Bijective enumeration of permutations starting with a longest increasing subsequence Greta Panova Harvard FPSAC 2010

  2. The Main Objects of Interest Definition Π n , k = { w ∈ S n | w 1 < w 2 < · · · < w n − k , is( w ) = n − k } , where is( w ) — length of the longest increasing subsequence of the permutation w Examples is : is(315264) = 3, 3 1 5 2 6 4,3 1 5 2 6 4 . 24568 317 ∈ Π 8 , 3 Π 4 , 2 = { 1432 , 2413 , 2431 , 3412 , 3421 } Π 5 , 2 = { 12543 , 13524 , 13542 , 14523 , 14532 , 23514 , 23541 , 24513 , 24531 , 34512 , 34521 } #Π n , k =? Answer (A.Garsia, A.Goupil) k � k � n ! � ( − 1) k − r #Π n , k = r ( n − r )! r =0 for n ≥ 2 k. Proof. (A.Garsia, A.Goupil, Character Polynomials, their q-analogues and the Kronecker product ) H m = � r ( − 1) r h m + r e ⊥ Schur row adder: r , s ( n − k ,µ ) = H n − k s µ � 1 − q ] ,φ n , k = � ˜ λ ⊢ n s λ [ X ] s λ [ 1 µ ⊢ k f µ s ( n − k ,µ ) = H n − k e k H n ( x ; q )=( q , q ) n 1 H n � =Π n , k ( q )= � ( ··· = � φ n , k , ˜ k s ) ( − 1) k − s � h n − s e s 1 , ˜ H n � = ···

  3. The Problem: Find a bijective proof of Π n , k formula! The Problem (A.Garisa, A.Goupil) Show k � k � n ! � ( − 1) k − r #Π n , k = r ( n − r )! r =0 bijectively (‘elementary’)! $ 100 award offered! (Garsia) Bijection for its q − analogue also: Theorem (A.Garsia, A.Goupil) k � k � � � q maj( w − 1 ) = ( − 1) k − r [ n ] q · · · [ n − r + 1] q , r w ∈ Π n , k r =0 where maj( σ ) = � i | σ i >σ i +1 i denotes the major index of a permutation and [ n ] q = 1 − q n 1 − q Background Partition of n : λ ⊢ n , λ = ( λ 1 ≥ λ 2 ≥ · · · ) � λ i = n Young diagram of shape λ : Standard Young Tableau of shape λ : λ = (4 , 2 , 2) → < 1 3 4 8 ∧ 2 6 5 7

  4. Robinson-Schensted-Knuth Theorem RSK is a bijection between permutations w ∈ S n and pairs of Standard Young Tableaux of same shape with n elements: w → ( P Q ) , ���� ���� Insertion Tableau Recording Tableau . RSK algorithm, step i : w 1 . . . w i → ( P i , Q i ) P i +1 = w i +1 → P i : 5 → 1 3 7 1 3 5 1 3 5 = 7 → = 2 2 2 7 4 4 4 Q i +1 = Q i + i+1 @new box of P i +1 Example (of RSK) w 1 = 5 , 5 6 56 1 , � � 1 6 , 1 2 � � � � 5 , 1 5 6 , 1 2 5 3 w = 561423 561 4 , 5614 2 , 56142 3 ,     1 2 1 2 1 2 3 1 2 6 � � 5 6 , 1 2 1 4 , , 4 6 3 4 4 6 3 4     3 4 5 5 5 5

  5. Some properties of RSK Theorem (Schensted) If w − → ( P , Q ) and λ = sh( P ) , then λ 1 = is( w ) .   1 2 3 1 2 6 is(561423) = 3 , 561423 − → , 4 6 3 4   5 5   1 2 3  = (3 , 2 , 1) , λ 1 = 3 λ = shape 4 6  5 Bijections Setup Lemma w ∈ Π n , k = { w ∈ S n | w 1 < w 2 < · · · < w n − k , is( w ) = n − k } ⇐ ⇒   . . . . 1 2 . . . n-k w − →  .  . . . . . . . . . . , Definition C n , k := { w ∈ S n | w 1 < w 2 < · · · < w n − k } . � n � # C n , k = k ! k Lemma   . . . . . 1 2 . . . n-k . w ∈ C n , k ⇐ ⇒ w − →  .  . . . . . . . . . . ,

  6. An easy bijection n − k n − k 1 2 . . . n-k . 1 2 . . . n-k a 1 . . . 1 2 . . . n-k +1 . . . a s + s = − → . . . . . . . . . . . . . . . . . . Map: ( a 1 , . . . , a s ) → ( n − k + 1 , . . . , n − k + s ) and all elements below first row: [ n − k + 1 , . . . , n ] \ [ a 1 , . . . , a s ] → [ n − k + s + 1 , . . . , n ] , preserving the order. n − k n − k 1 2 . . . n-k a 1 . . . a s 1 2 . . . n-k +1 . . . + s ← → × ( a 1 , . . . , a s ) . . . . . . . . . . . . Example ( n = 9 , k = 5) 1 2 3 4 6 8 1 2 3 4 5 6 − → × ( 6 , 8 ) 5 9 7 9 7 8                 . . . . . . . 1 2 . . . n-k .       C n , k ← → , . . . . . . . .         . . . .         � �� �   P     n − k � [ n − k + 1 , . . . , n ] � 1 2 . . . n-k .  + s  � ↔  P , ×  . . . . s   s . . � �� � Π n , k − s Lemma � [ k ] � � n � � k � As sets: C n , k ≃ � k k ! = � k s =0 Π n , k − s × . As numbers: s =0 Π n , s × . s k s

  7. Inclusion-Exclusion bijection     a 1 > · · · > a s , > < 1 2 . . . n-k a 1 . . . a s b 1 . . .     b 1 < b 2 < . . . , D n , k , s : = { P , } , . . . .   <   rest ∧ ↓ , → . .   � �� � Q   1 2 . . . n-k a 1 . . . C n , k \ Π n , k = {  P ,  } ⊂ D n , k , 1 . . . . . . � �� � E n , k , 1     1 . . . n-k a 1 a 2 .   D n , k , 1 \ E n , k , 1 =  P , ⊂ D n , k , 2 , a 1 > a 2  . . .   . . � �� � E n , k , 2 . . . Π n , k = C n , k \ ( D n , k , 1 \ ( D n , k , 2 \ . . . D n , k , k ))     n − k n − k 1 2 . . . n-k +1 . . . b 1 .  + s   × ( a 1 , . . . , a s ) D n , k , s ≃  P , . . . .   . . � [ k ] � = C n , k − s × s Theorem When 2 k ≤ n, k � k � k � k � n ! � � ( − 1) s # C n , k − s ( − 1) k − r #Π n , k = = ( n − r )! . s r s =0 r =0

  8. The major index Definition The descent set of an SYT T is   . . i .   D ( T ) =  i : = T  . . . . . i+1 . The major index is maj( T ) = � i ∈ D ( T ) i . 1 3 4 8 T = D ( T ) = { 1 , 4 , 6 } , maj( T ) = 11 , 2 5 6 7 Corollary (to RSK) RSK ↔ ( P , Q ) , then D ( w − 1 ) = D ( P ) , so maj( w − 1 ) = maj( P ) . If w q − analogue � � q maj( w − 1 ) = q maj( P ) w ∈ Π n , k ( P , Q ) ∈ RSK (Π n , k ) � q maj( P ) = ( P , Q ) ∈ C n , k \ ( D n , k , 1 \ ( D n , k , 2 \ ... D n , k , k )) � � � q maj( P ) − q maj( P ) + q maj( P ) + . . . = ( P , Q ) ∈ C n , k ( P , Q ) ∈ D n , k , 1 ( P , Q ) ∈ D n , k , 2   1 . . . n-k a 1 . . . a s . . . ( P , Q ) =  P ,  . . . . .   n − k n − k 1 . . . n-k +1 . . . . . . + s  × ( a 1 , . . . , a s ) ↔  P , . . . . . � [ k ] � D n , k , s ≃ { ( P , Q ′ ) ∈ C n , k − s } × s

  9. � q maj( P ) = ( P , Q ) ∈ C n , k � k � � k � � � q maj( P ) + q maj( P ) + . . . − 1 2 ( P , Q ) ∈ C n , k − 1 ( P , Q ) ∈ C n , k − 2 But ( P , Q ) ∈ D n , k , s ⇔ Q ↔ Q ′ × ( a 1 , . . . , a s ) , Q ′ ∈ C n , k − s , so � � � q maj( P ) − q maj( P ) + q maj( P ) + . . . = ( P , Q ) ∈ C n , k ( P , Q ) ∈ C n , k − 1 ( P , Q ) ∈ C n , k − 2 � q maj( P ) = ( P , Q ) ∈ C n , k � k � � k � � � q maj( P ) + q maj( P ) + . . . − 1 2 ( P , Q ) ∈ C n , k − 1 ( P , Q ) ∈ C n , k − 2 Lemma � q maj( w − 1 ) = [ n ] q . . . [ n − r + 1] q , w ∈ C n , r Proof: P − partitions or Foata’s bijection. Theorem k � k � � � q maj( w − 1 ) = ( − 1) k − r [ n ] q · · · [ n − r + 1] q , r r =0 w ∈ Π n , k

  10. � � � � � � Permutations only, no RSK, definitions Issue: Cannot apply RSK − 1 to the non-SSYTs in D n , k , s . Hence we need a slightly different approach: Definition LLI- m (Least Lexicographic Indices) property of an increasing subsequence σ = w i 1 , w i 2 , . . . , w i m of w ∈ S n if is( w 1 . . . w i m − 1 ) = m − 1 ( i 1 , . . . , i m ) - lexicographically smallest such w = 12684357’s LLI-5 12 68 4 3 57 . Definition φ : C n , s \ Π n , s → C n , s − 1 × [ n − s + 1 , . . . , n ] : LLI- n − s + 1 sequence of w : w 1 . . . w r w i r +1 . . . w i n − s +1 , φ ( w ) = ( w 1 . . . w r w r +1 . . . w n − s . . . w i r +1 . . . w i r + w . . . ) × i m n = 13 , s = 7 φ (2 , 4 , 5 , 6 , 9 , 13 , 8 , 1 , 7 , 10 , 3 , 12 , 11) : 2 , 4 , 5 , 6 , 9 , 13 , 8 , 1 , 7 , 10 , 3 , 12 , 11 2 , 4 , 5 , 6 , 9 , 13 , 8 , 1 , 7 , 10 , 3 , 12 , 11 = ( 2 , 4 , 5 , 6 , 8 , 9 , 13 , 10 , 1 , 7 , 12 , 3 , 11) × 12 Set C n , s , a = { w ∈ C n , s | LLI − ( n − s + 1) ends at index a } . Lemma φ is injective. C n , s − 1 \ φ ( C n , s , a ) = ( � n − s +2 ≤ b ≤ a C n , s − 1 , b ) × a.

  11. Inclusion-Exclusion bijection on permutations � � C n , k \ Π n , k = C n , k , a 1 ≃ Φ( C n , k , a 1 ) n − k +1 ≤ a 1 ≤ n n − k +1 ≤ a 1 ≤ n   � � =  C n , k − 1 × a 1 \ C n , k − 1 , a 2  n − k +1 ≤ a 1 ≤ n n − k +2 ≤ a 2 ≤ a 1   � [ k ] � � = C n , k − 1 × \ C n , k − 1 , a 2 × a 1   1 n − k +2 ≤ a 2 ≤ a 1 ≤ n � [ k ] � ≃ C n , k − 1 × \ 1     � [ k ] � �  C n , k − 1 × \ C n , k − 2 , a 3 × ( a 2 , a 1 )    2 n − k +3 ≤ a 3 ≤ a 2 ≤ a 1 ≤ n � [ k ] � � � [ k ] � C n , k \ Π n , k ≃ C n , k − 1 × \ C n , k − 2 × \ . . . 1 2 � � [ k ] � � � · · · \ C n , k − r × \ . . . . . . r k � k � n ! � ( − 1) k − r = ⇒ #Π n , k = r ( n − r )! r =0 Also maj( w − 1 ) = maj( φ ( w ) − 1 ), so maj is preserved and k � k � � � q maj( w − 1 ) = ( − 1) k − r [ n ] q · · · [ n − r + 1] q r w ∈ Π n , k r =0

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend